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Abstract 
This paper presents the NSLS-II fast orbit 

feedback system with individual eigenmode 
compensation. The fast orbit feedback system is a typical 
multiple-input and multiple-output (MIMO) system. 
Traditional singular value decomposition (SVD) based 
fast orbit feedback systems treat each eigenmode the same 
and the same compensation algorithm is applied to all the 
eigenmodes. In reality, a MIMO system will have 
different frequency responses for different eigenmodes 
and thus it is desirable to design different compensation 
for each eigenmode. The difficulty with this approach 
comes from the large amount of computation that needs to 
be done within the time budget of the orbit feedback 
system.  We designed and implemented the NSLS-II fast 
orbit feedback (FOFB) system with individual eigenmode 
compensation by taking advantage of the parallel 
computation capability of field programmable gate array 
(FPGA) chips. 

INTRODUCTION 
NSLS-II is a third generation 3GeV storage ring with 

ultra-low emittance [1]. The low emittance requires a very 
stable electron beam orbit. Applying the common rule 
(beam stability < 10% of beam size), one discovers that 
the NSLS-II needs to hold submicron beam orbit stability. 
The stringent orbit stability requires the orbit feedback 
system to be able to suppress various noises from low 
frequency ground motion to high frequency mechanical 
vibration [2].   

In an orbit feedback system, there are many beam 
position monitors (BPMs) to monitor the orbit and many 
correctors to correct the orbit. It is a typical multiple-input 
and multiple-output (MIMO) system and singular value 
decomposition (SVD) is commonly used for the feedback 
calculation.  To correct the ill-conditioned response 
matrix, truncated SVD (TSVD) and Tikhonov regulation 
is often applied to improve the orbit feedback 
performance [3]. 

One common feature for the traditional SVD based 
orbit feedback algorithm is that it applies the same 
controller dynamics (such as PID loop) to all eigenmodes.  
It will be desirable to control each eigenmode with a 
different controller and thus each eigenmode has different 
compensation in the frequency domain [4]. This approach 
provides many benefits for both system analysis and orbit 
correction. The challenge for such individual eigenmode 
compensation is that the feedback system needs to finish 
much more calculations within the time budget of the fast 
orbit feedback system. In this paper, we present a FPGA-
based fast orbit feedback algorithm solution for such an 

approach. To simplify the discussions, only one corrector 
plane is considered in this paper. The algorithm for the 
other corrector plane is the same and can be treated 
independently.  

ALGORITHM 

FOFB Without Orbit Eigenmode Decoupling 
Using the common FOFB and SVD notations, we 

assume there are M BPMs and N fast correctors in the 

orbit feedback system. Orbit displacements d (M 

component vector) and corrector kick angles (N-
component vector) have the following relationship: 

     (1) 

When , the SVD of matrix R can be 
represented as 

   (2) 

Where U is a MxN matrix with orthonormal column 

vector set. 

 

is the transpose of the NxN matrix V 

which also has orthonormal column vector set.  is an 
NxN diagonal matrix with non-negative elements and we 
refer to its eigenvector as the orbit eigenmodes discussed 
in this paper. 

Using SVD, we can get the inverse response matrix, 

    (3) 
And the required corrector strength is found to be, 

       (4) 
In practise, the actual corrector kick angles are 

calculated with a PID or PI controller. 

    (5) 

Where

 

is used to present any compensator 

controller such as PID.  
The above describes a simple SVD-based FOFB 

algorithm. From equation (4), we can see that the 
calculation needed for one corrector strength is M 
multiplications and an accumulation (MAC). The 
remaining controller (PID) needs a few (assuming k) 
MAC for each of the corrector strengths. Then the total 
calculation needed for one corrector strength is, 

     (6) 

The total calculation for all correctors’ strength is,   

           

 

                  (7) 

FOFB With Orbit Eigenmode Decoupling and 
Individual Eigenmode Compensation 

The best way to describe the FOFB with decoupling 
and individual eignemode compensation is to use the 
diagram in Figure 1.  
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Figure 1:  FOFB with eigenmode compensation. 

In Figure 1, 

 

is the noise in the system and  is the 

eigenspace projection of each input.  is the golden 

orbit and we set it to zero for a simpler discussion. 

    (8) 

We use to represent the eigenspace projection at 

feedback cycle n for input signal. 

   (9) 

For each of the components of , an individual 

digital controller can be designed to carry on various 

standard compensations. We use to represent the 

digital controller applied only on the ith eigencomponent 

of .  Combining all the single mode compensation, 

we can write the total compensation in eigenspace as,  

        

     (10) 

Equation (10) decouples the MIMO problem into many 
single input single output (SISO) problems, for which 
control theory has many standard treatments. Let’s see the 

effect of  by calculating the eigencomponent of   

in the (n+1) feedback cycle. 
In cycle n, the corrector strength is, 

                (11) 

And the feedback signal is, 

(12)    

 

Since 

 

and  ,  

  

    (13) 

In eigenspace, the new projection vector is, 

   

Or,  

                                
                                                                                   (14) 
Equation (14) shows that the digital controller has a 

pure effect only on the ith eigencomponent of  and 

doesn’t affect other eigencomponents. The second term of 
equation (14) represents the noise projection on the 
eigenspace, where it can be individually suppressed. This 
is the exact advantage of doing digital compensation in 
eigenspace. 

Because we decouple the input vector in eigenspace and 
design compensators for each eigenmode, the calculation 
will be much larger than the FOFB without decoupling, as 
described in equation (5).  Let’s calculate the total 
calculation needed for one corrector strength.  

From equation(9),the decoupling calculation amount is, 

   (15) 

Assume we have digital compensations for all the 
eigenmodes (in reality we might only treat a few 
significant components), then the total calculations in 
eigenspace are,  

   (16) 

Here we use k to represent the average digital 

compensator calculation amount. Since  is a diagonal 
matrix for proportional gain control, it can be included in 

the digital compensator .  

Once we get the compensated vector, we need to 
calculate correctors’ strengths. One corrector strength is a 
summary for all compensated eigenmodes,  

   (17) 

Adding equation (15), (16) and (17) gives the total 
calculation needed for one corrector strength is, 

  (18) 

The total calculation to get all corrector strengths is, 

   (19) 

Comparing equation (6), (7), (18) and (19), we can see 
that the calculation amount is much larger for the 
decoupling algorithm. For NSLS-II, there are 240 BPMs 
and 90 fast correctors; we assume a simple PID 
compensator (k=3); equation (18) gives us the total 
calculation (MAC) needed for one corrector strength, 

  (20) 

And the total calculation for all the correctors is,

 

   

     (21) 

About 2.7million MAC need to be finished within the 
orbit feedback calculation time budget. For NSLS-II’s 
10KHz fast orbit feedback, the total time budget is 100us. 
Besides the orbit feedback calculation, much time should 
be reserved for data communication:  distributing all 240 
BPM data around the 800 meter ring and sending 
setpoints to 90 fast correctors around the ring. If we 
assume that half of the time budget (50us) is spent on 
orbit feedback calculation, then the equation (18) and (19) 
are 600million MAC per second and 5400million MAC 
second respectively.  As a reference, the high end DSP 
chips on the market give about 200million floating point 
(MFLOP) calculation capability. 

It is clear that the individual eigenmode compensation 
provides us with flexible control for the MIMO system. It 

Proceedings of 2011 Particle Accelerator Conference, New York, NY, USA WEODN4

Instrumentation and Controls

Tech 05: Beam Feedback Systems (hardware) 1489 C
op

yr
ig

ht
c ○

20
11

by
PA

C
’1

1
O

C
/I

E
E

E
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)



also challenges us to solve the large computation problem. 
Fortunately, the parallel processing nature of FPGA and 
its powerful DSP function blocks allows us to achieve the 
calculation requirement.  Moreover, the two-tier data 
communication structure of the NSLS-II control system 
provides an efficient and reliable mechanism for both 
BPM data and corrector data transfer.  

IMPLEMENTATION 

Architecture  

 
               Figure 2: NSLS-II FOFB architecture.  
Figure 2 shows the block diagram of the NSLS-II fast 

orbit feedback system. There are 30 cells in the NSLS-II 
storage ring and this diagram shows the main FOFB 
components in one cell: cell controller, BPM, corrector 
power supplies, and EPICS IOC. A two-tier 
communication is designed to distribute the data among 
the ring. At the lower tier, local BPM data is delivered to 
the cell controller through a 2.5Gbps and redundant serial 
device interface link (SDI). The setpoints for the corrector 
are also delivered to power supply controller (PSC) 
through a 100Mbps serial interface link. At the higher tier, 
the similar 2.5Gbps SDI link between cell controllers is 
used to deliver all BPM data around the ring. The cell 
controller is the central piece for the orbit feedback 
system: it has all the BPM data, it carries all the orbit 
feedback calculation, and it controls the local power 
supplies. The cell controller has a Gigabit Ethernet port to 
communicate with EPICS IOC. 

Due to the distributed character of the system, we don’t 
need to deal with the large calculation described in 
equation (22). Each cell controller need only calculate the 
3 local corrector strengths as shown in equation (21). 

 

Calculation in FPGA 
Figure 3 show the FPGA calculation structure for the 3 

local correctors. One can notice that the decoupling 
calculation (equation 15) is done in parallel for all the 
eigenmodes (90 for NSLS-II). So the calculation time for   
decupling (equation 15) is reduced to 240MAC. The 
compensation for each eigenmode (equation 16) is also 
done in parallel since they are independent of each other.  
For the output calculation (equation 17), the FPGA only 
needs to calculate its local corrector strengthen, which 
needs N (90 for NSLS-II) MAC for each corrector. And 
the three local correctors strength are calculated in 
parallel.  

 
Figure 3: FPGA calculation structure. 

The total FPGA calculation time is about 330 MAC 
((240+90). During this time, many parallel calculations 
are carried out.  

We have implemented the detailed FOFB calculation in 
FPGA. Since FPGA calculation is based on fixed point 
algorithm, we compared it with the floating point 
calculation to show that the loss of accuracy for FPGA 
fixed point calculation is minimal. The detailed 
implementation and discussions will be discussed in other 
papers.  

SUMMARY 

This paper discussed the NSLS-II FOFB algorithm with 
eigenmode compensation.  It shows that this algorithm 
provides better controllability for the orbit feedback 
system by decoupling the feedback signal into eigenspace 
and compensating for each eigenmode. It shows the 
calculation challenges for this approach. It also shows 
how the NSLS-II FOFB architecture is able to solve this 
challenge.  
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