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Abstract 
The Brazilian Synchrotron Light Laboratory (LNLS) is 

currently commissioning a Fast Orbit Feedback System 
(FOFB) for its 1.37 GeV UVX Storage Ring. This paper 
briefly reviews the evolution of FOFB systems and 
presents the optimization work which is planned for the 
LNLS ring using the new hardware capabilities. Well-
known strategies such as singular values conditioning for 
correction matrix, dynamic control by means of PI and 
IMC controllers as well as the EVC method are discussed. 
The problem of actuator limitations (saturation and slew 
rate) is also investigated, providing a new front line for 
improving beam stability through orbit feedback. 

INTRODUCTION 
Fast Orbit Feedback (FOFB) systems have been in use 

in particle accelerators, since the early years of the 1990’s 
decade. The goal of such systems is to mitigate fast orbit 
disturbances mainly due to mechanical vibration of lattice 
magnets, power supply (PS) ripple, booster cycles during 
top-up injection and insertion device gap-phase 
reconfiguration. They can replace or operate in 
combination with Slow Orbit Feedback (SOFB) and RF 
frequency correction systems to correct or attenuate slow 
disturbances such as magnetic field errors, thermal drifts 
and ground motion. The present systems can provide sub-
micron global stability for the electron beam position 
integrated from 0 to around 250 Hz [1]. 

After a brief review of FOFB main topics, this paper 
will present the optimization approach which is planned 
for the LNLS Fast Orbit Feedback. 

REVIEW OF FOFB SYSTEMS 

The SVD Algorithm 
The so-called Singular Value Decomposition (SVD) is 

today a de facto standard algorithm for orbit correction in 
accelerators, mainly due to its numerical robustness, 
ability to minimize the RMS closed orbit distortion 
(COD) or corrector strengths, and selecting the most 
effective correction modes in an insightful mathematical 
framework. It has gradually replaced the MICADO and 
harmonic algorithms with no prejudice to the orbit 
correction performance [2]. 

The well-known formulation is stated as follows: 

 TUSVR   (1) 

where R  is the m x n beam response matrix (steady-state 
response), U  is an m x m orthonormal basis matrix 

which rotates the input beam position vector into a new 
space (named mode space), V  is an n x n orthonormal 
basis which transforms the corrector strengths vector from 
mode space to the actual corrector strength vector (or kick 
vector) and S  is a m x n rectangular diagonal matrix 

containing the singular values of R .  
A pseudo-inverse matrix of R  which is normally used 

as beam correction matrix can be obtained by: 

 T
invUVSC   (2) 

where invS  is a n x m  rectangular diagonal matrix 

containing the reciprocals of the singular values of R . 

Singular Values Filtering 
The most basic treatment which can be done with the 

singular values of the response matrix is to identify those 
with very small magnitude. They correspond to the modes 
which will demand large excursions of corrector strengths 
to provide little contribution on the beam steering. A rule 
of the thumb is to keep the condition number, which is the 
ratio between the largest and the smallest singular values, 
below 100. This can be done by applying some 
regularization method and/or by eliminating the values 
below a chosen threshold. The Tikhonov regularization 
method has been used for this purpose [2], although other 
regularization methods could be used as well. 

Local vs. Global Correction 
A major concern with the first orbit feedback systems 

was how to deal simultaneously with global and local 
correction loops. While a slow orbit correction loop 
provided DC correction around the whole ring, fast orbit 
feedback loops applied local corrections by means of 
closed-bumps, aiming on stabilizing beam angle and 
position at selected source points. Although this was 
somewhat possible in the beginning, the addition of 
several local loops with independently reconfigurable 
insertion devices controlled by beamline users led to 
important bump leakages which compromised the global 
orbit stability. 

One very elegant solution to this issue has been 
proposed in [3], the Eigenvector with Constraints (EVC) 
method. Using the Lagrange multipliers method, one can 
set constraints of zero position error for specific points in 
the ring whilst minimizing the least square error of the 
remaining BPMs. This approach solves the problem of 
uniting global and local orbit correction within the same 
correction scheme with a relatively simple formulation, 
summarized herein. First let us consider the matrix A  
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and its decomposition in eigenvectors (V ) and 

eigenvalues ( ): 

 RRA T  (3) 

 TVVA   (4) 

It can be shown that the eigenvalues   of the 
symmetrical matrix A  are the square of the singular 
values of R , so that the above mentioned filtering of  
singular values can be made equivalently to the square 
root of the eigenvalues of A . 

In this context, a l x m matrix Z is defined to select the l 
BPMs where zero error is desired. The i-th row and j-th 
column of Z  is equal to 1 for indicating that the 
constraint i is set to the j-th BPM reading. The other 
elements of Z  are zero. 

The auxiliary matrices B  and D  are defined as: 

  TZRB   (5) 

   111 ~~  BABBAD T  (6) 

where 1~A  is the inverse of A  obtained with the filtered 
reciprocals of the eigenvalues of  . 

Finally the beam correction matrix C  is obtained, with 
filtered singular values and zero error constraints for a set 
of BPMs, by calculating the following expression: 

 T
n

T RAIDBDZC 1~
)(   (7) 

where nI  is the n x n identity matrix. 

Dynamic Control in Mode Space 
Most of the FOFB systems operating today use a PI 

controller in each power supply setpoint to close the orbit 
correction loop. However, as described in [4] a tighter 
control, with improved performance and stability 
margins, could be achieved at Diamond using the Internal 
Model Control (IMC) and the Tikhonov regularization for 
the response matrix singular values. The architecture 
which was proposed in [5] included the orbit control in 
mode space, that is, a dynamic controller on each 
transformed corrector coordinate instead of the real 
corrector setpoints. However, due to the feedback 
processing hardware limitations, the traditional approach 
was applied and the treatment in mode space was done 
only via the singular values filtering. 

OPTIMIZATION FOR LNLS FOFB 
The optimization work which is planned for the LNLS 

UVX storage ring FOFB considers the use of PI 

controllers for each corrector power supply setpoint, 
singular values filtering for detuning the less 
effective/most demanding correction modes and the EVC 
method for guarantying zero error on critical BPMs. 
According to simulations, with the new control hardware 
capabilities [6] and the new fast corrector power supplies 
(currently in production phase), it might be possible to 
reach a maximum correction bandwidth around 50 Hz for 
the vertical plane (24 x 24 matrix). 

The problem of actuator limitations (saturation and 
slew rate) is treated with a classical anti-windup loop, 
which prevents the closed-loop response from 
overshooting and even destabilizing when large current 
demands are sent to the power supplies. The dynamic 
controller structure is shown in Figure 1. 

 
Figure 1: PI anti-windup structure. 

PI Controller Tuning 
Considering an open-loop response dominated by a 

first-order dynamics (the stainless steel vacuum chamber 
has 1.25 kHz bandwidth and can be neglected) due to the 

power supplies response (unitary gain 1PSK  and 

ms5.0PS  constant time) and a time delay 

( ms1 ) due to the data distribution over the 

acquisition and actuation networks, the simulated PI 
controller of Figure 1 was tuned with the following 
classical rules [7]: 

 ))(4,min(   CLPSiT  (8) 

 






CL

PS

PS
P K

K
1

 (9) 

where CL  is the desired closed loop time response and 

was made PSCL  8  to avoid great disturbance 

amplification above the feedback bandwidth. The 
maximum amplification is then limited to 1.5 dB at 

150 Hz. The controller update rate is ms5.0ST . 

The actuator maximum slew rate is ± 0.2 A/ms and its 
amplitude saturation is ±10 A. 

Directionality and MIMO System Bandwidth 
Since global orbit feedback systems are essentially 

multiple-input-multiple-output (MIMO) systems, it is of 
crucial importance to take in account the “direction” of 
the disturbances (thinking in the beam position readings 
as vector coordinates) when analysing the closed-loop 
performance. Different disturbance directions lead to 
different system bandwidths, so that we must consider a 
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bandwidth region for the system instead of a single 
bandwidth frequency [7]. 

In this regard, the approach here is to reduce the close-
loop bandwidth for the high-order mode directions. 
Generally speaking, it makes the FOFB slower for the 
“difficult-to-correct disturbance directions” so that 
minimum steady state error (or zero error) is achieved in a 
longer time than for the “easy directions”. This was done 
by filtering the singular values as depicted in Figure 2.  
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Figure 2: Vertical plane response matrix singular values. 

Three levels of singular values can be observed, from 
modes 1-12, 13-18 and 19-24. The modes 13-18 were 
multiplied by a factor 20 and the modes 19-24 by a factor 
40. With such change, the condition number decreased 
from 1387 to 219. 

Figure 3 shows the disturbance rejection frequency 
response before and after filtering the singular values. It 
can be noted that the high-order modes were detuned in 
order to avoid unattainable power supply demands. 
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Figure 3: Sensitivity Function for Closed-Loop Response. 

Figure 4 shows a step disturbance composed by a 
combination of the lowest-order and the highest-order 
mode disturbance direction (equal weights for each) with 
maximum position deviation of 100 µm. 
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Figure 4: Step response with different closed-loop 
configurations: singular values filtering (SV-Filt), anti-
windup strategy (AW) and zero error constraints for two 
BPMs (EVC).  

When no singular value is applied, there is a great 
amplification of the disturbance due to actuators 
limitation. With the regularized singular values, the low-
order mode is quickly vanished (<10 ms) while the high-
order mode takes much longer time (~ 1s) to be corrected.  

CONCLUSION 
An overview of fast orbit feedback systems was given. 

Some of the present challenges for FOFB systems were 
identified: the dynamic control in mode space and the 
inclusion of actuator saturation and slew rate 
nonlinearities in the feedback control design. An initial 
strategy for optimizing the feedback loop is tried and the 
results show that the singular values filtering and anti-
windup scheme are essential to obtain increased 
performance in closed-loop. The EVC method has proven 
to not significantly degrade the global COD while 
guarantying zero error for a small set of BPMs. For the 
LNLS UVX storage ring vertical plane, the simulations 
show that an effective correction bandwidth around 50 Hz 
for the low-order modes with maximum amplitude of 
100 µm might be achieved. For the high-order modes, the 
corrections can be done with a much smaller bandwidth 
for guarantying no steady state error whilst not 
demanding unrealistic current setpoints to the power 
supplies. The optimization procedure will be applied in a 
more systematic way in order to achieve greater 
performance for the high-order modes. 
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