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Abstract 
Under a U.S. Department of Energy grant, Diversified 

Technologies, Inc. (DTI) is developing a short pulse, 
solid-state Marx modulator (Figure 1). The modulator is 
designed for high efficiency in the 100 kV to 500 kV 
range, for currents up to 500 A, pulse lengths of 0.2 to 5.0 
µs, and risetimes <300 ns. Key objectives of the 
development effort are modularity and scalablity, 
combined with low cost, and ease of manufacture. For 
short-pulse modulators, this Marx topology provides a 
means to achieve fast risetimes and flattop control that are 
simply not available with hard switch or transformer-
coupled topologies. In this paper, DTI will describe the 
new design and provide an update on progress. 

INTRODUCTION 
The high energy physics community continues to plan 

the next generation of particle accelerators. These 
accelerators will require large numbers of RF cavities, 
producing field gradients undreamt of a dozen years ago. 
The modulators that will drive the klystrons for these new 
accelerators must meet pulse risetimes, flatness, and 
repeatability beyond the current state-of-the-art. Overlaid 
on these technical specifications are increasing demands 
for reliability and up-time, which far surpass the norm for 
high voltage electronics. Fortunately, solid-state 
modulators, with proven architectures for a wide range of 
pulse characteristics, are available to meet future 
demands.  

High energy, short pulse modulators are the next 
frontier. Based on research begun under the Next 
Generation Linear Collider (NLC) program, modulators 
of this type are being re-examined for the Compact Linear 
Collider (CLIC) and numerous X-Band accelerator 
designs. There is not, however, a fully optimized, 
transformerless modulator design capable of meeting the 
demanding requirements of very high voltage pulses at 
short pulsewidths.  

Solid-state Marx modulators have gained preferred 
status alongside alternative modulator topologies. For 
example, the hybrid modulator, consisting of a solid-state 
switch with pulse transformer, achieves better 
performance than conventional thyratron/PFN designs, 
but has significant risetime and flattop limitations 
compared to the Marx architecture. Alternative designs, 
with multiple primary switches driving a pulse 
transformer with series-connected secondaries, have 
similar pulse performance limitations. The Marx 
topology, however, provides a means to achieve 
astounding short-pulse risetimes and flattop control that 
are simply not available with hard switch or hybrid  

Figure 1: Planned 500 kV Marx modulator with an array 
of fifty of the plates shown in Figure 3. 

topologies. The basic proof of principle of solid-state 
Marx architectures has been demonstrated by several 
organizations, including DTI. Deployable solutions for 
high voltage, short pulse accelerators have not previously 
been available, however, DTI believes that this flat-pack 
design will provide the required performance and 
reliability at a cost that is competitive with existing 
technologies.  

ARCHITECTURE 
The short-pulse modulator is a high peak-power pulse 

modulator of greater efficiency than presently available, 
in the 100 kV to 500 kV range, for currents of up to 500 
A, pulse lengths of 0.2 to 5.0 us, and risetimes <300 ns. A 
key objective of the development effort is a design which 
is modular and scalable, yet low cost, and easy to 
manufacture and maintain. Recently, DTI significantly 
reworked its original Marx bank architecture to achieve a 
low-cost, highly modular, and scalable design without 
compromising pulse performance.  

DTI’s previous prototype experiments quickly showed 
that a design which optimized risetime incurred very high 
dI/dt throughout the switching circuitry – and thus 
required extreme attention to detail to eliminate induced 
currents in nearby logic, gate drives, and diagnostics 
circuitry. In addition, the very high system voltage 
incurred significant capacitive pickup on the higher stages 
on pulse leading and trailing edges. These burdens were 
remediated by careful circuit design and layout and 
precise mechanical Faraday shielding. The design makes 
use of both filter and snubbing elements to protect the 
sensitive sub-circuits. It also includes careful routing and 
layout in order to guarantee that such inductive pickup as 
exists does not drive parasitic secondary currents in 
harmful areas. 
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 plugs into a connector supplying charging HV, core bias 
current, auxiliary housekeeping power, and ground. A 
connector on the final module is connected to the Marx 
output coaxial cable, and includes a loopback for the 
common-mode choke bias current.  

Scalability - The flat-pack Marx design is inherently 
modular and scalable, as additional plates may be added 
for a wide range of voltages. Whether at 100 or 500 kV, a 
Marx bank can use the same modules. The primary 
impact of additional plates is an increase in the charging 
current at the first plate, since it carries the current for all 
subsequent plates as well. Stray capacitance is also 
greatest at higher voltages, assuming constant spacing to 
the tank. 

PROTOTYPE TESTING 
During testing of the prototype bank, we ran all four 

gates synchronously for a 1.5 µs pulse, with a 10 kV pre-
charge into the system, resulting in a 40 kV output. The 
prototype modules performed flawlessly into high 
voltage, with none of the chatter or jitter that would 
otherwise be associated with gate drives impacted by 
noise coupling at high voltage. We then demonstrated the 
pulse-staggering capability of the Marx design by 
delaying the successive modules by 0, 0.5, 1.0, and 1.5 µs 
on a 2.3 µs pulse with a 7.5 kV pre-charge (Figure 4). The 
distributed effect of the snubbing RL networks is clearly 
apparent here, with the fractional overshoot visible as 
each successive stage turns on into the high impedance 
load. 

 

Figure 4: Four modules operated in staggered pulse 
mode, showing the individual control of each module. 

STATUS/PLANS/CONCLUSIONS 
DTI has completed the redesign of the short pulse Marx 

modulator and demonstrated multiple modules working 
both synchronously and in staggered operation. In Phase 
II of this effort, DTI will build and test a complete 500 kV 
modulator, and install it at the Yale University Beam 
Physics Laboratory for operation with Yale’s Magnicon 
amplifier. 
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