
ASSET MANAGEMENT APPLICATION FOR LLRF CONTROL SYSTEM

B. Sakowicz*, M.Kamiński, D. Makowski, A. Piotrowski, P. Mazur, A. Napieralski, DMCS TUL,
Poland

Abstract
This paper presents the base assumptions of a LLRF

Asset Management System [5]. The application consists
of several database modules which are designed to
facilitate management and operation of a distributed
control system composed of many hardware and firmware
nodes, and spread geographically across a wide area.

The system is currently deployed in DESY institute in
Hamburg, Germany to facilitate tasks of managing
dynamically changing LLRF system used in FLASH and
XFEL [1, 2, 3] particle accelerators.

INTRODUCTION
A digital LLRF (Low Level Radio Frequency) control

system is currently used as a part of many accelerators,
which include the X-Ray Free Electron Laser (XFEL)
currently located in Hamburg, Germany.

The control system was developed to provide high
availability and reliability, therefore it was decided to
incorporate the ATCA (Advanced Telecommunication
Computer Architecture) and AMC (Advanced Mezzaine
Card) standards. These standards also provide a module
oriented design of the system, and provide several levels
of redundancy for key subsystems such as power
management, diagnosis and communication.

The system is currently composed of few dozens ATCA
stations built with an application of FPGA (Field
Programming Gate Array) devices. Each ATCA station cat
contain multiple FPGA devices, and every FPGA device
needs to be programmed using a binary firmware file that
contain the FPGA matrix configurations, binary files for
PROM (Programmable Read Only Memory) and BDSL
files (Boundary-Scan Description Language) that contain
descriptions of the JTAG chain of these devices. The
overall structure of the system is presented in Fig.1.

APPLICATION
The application design started on the basis of a simple

firmware database application to facilitate management of
the binary files used in a LLRF system [6]. In time the
idea evolved into a much more complex solution which
could provide the following functionalities:
 Store and modify the current structure of most of the

devices comprising the accelerator
 Store the DOOCS1 parameter types and values used

by these devices
 Store and retrieve information about cable wirings in

the accelerator structures

*{Sakowicz, kaminski, makowski, komam, pmazur, napier}@dmcs.pl
1
 DOOCS – Distributed Object Oriented Control System – software

system for storage and retrieval of objects within an distributed
environment.

 Store firmware binary and source files for each
FPGA board present on the system

 Provide information about signals being generated
by devices, including persons responsible for any
particular system

DESIGN
In order to describe the internal structure of

components used in LLRF system, a graph based
approach was taken into consideration. LLRF components
such as:
 Accelerator hardware elements
 Internal wiring between components
 Accelerator software elements
may be described in a form that resembles a tree graph

which contains cycles. Core LLRF elements may be
presented in a tree-form alone, but considering the wiring
between these elements and other relations which may
arise at a later time inclusion of cycles to the data model
was necessary.

The system was developed using the J2EE platform,
utilising only open source libraries such as:
 Hibernate Framework as an ORM solution
 Spring Framework used as an IoC container [4]
 Struts 2 framework as an MVC Controller
 Apache CXF framework for providing Web Service

access

Figure 1: An example structure of the firmware database
nodes in the FLASH accelerator.

TUP040 Proceedings of 2011 Particle Accelerator Conference, New York, NY, USA

880C
op

yr
ig

ht
c ○

20
11

by
PA

C
’1

1
O

C
/I

E
E

E
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Accelerator Technology

Tech 20: Infrastructure

The data was therefore described as an tree-like
structure comprised of classes written in Java language. In
order to represent the node (device, firmware etc..)
hierarchy the inheritance of data structures was used.
Each node type in the tree structure is modelled as a Java
class file, having a set of pre determined fields for
example: node name and description, and also a set of
new fields which are particular for that specific node for
example: a list of inputs and outputs for devices
supporting cable wiring, or a list of binary attachments for
firmware and documentation storage. The node classes
can then be extended to introduce new node types based
on other node types.

The model of the single node of the structure is
depicted in Fig. 2.

DATA STORAGE
The resulted data model was then described as a set of

entities of the Hibernate Java framework using the “single
table” inheritance strategy. This allows to map an
complex set of similar Java classes to a single table.
Therefore the core tree node data is represented in the
database with only one, single database table containing
columns for all available fields in every node. The
resulting model may seem redundant at first, as it
produces wide database rows, but it also facilitates
database management and allows for performing more
advanced node operations such as searching based on
complex criteria using much less complicated database
queries. The performance gain of using the “single table”
inheritance strategy is therefore clearly visible.

In order to maintain internal data consistency a set of
constraints must also be set. Any node present in the

resulting tree should be subjected to following
constraints.
 Structure constraints: ensuring that a specific type of

node may be inserted only in a particular place in the
tree structure

 Field constraints: ensuring that the specific node has
its fields correctly filled out.

 Additional constraints: for example: enforcing other
constraints which affect the structure of the device
tree. For example: an FPGA board can only be
inserted into a FPGA crate which supports the same
model of board

Most of these constraints were modelled using features
already available in the Java programming language. The
inheritance of node classes allowed to define an single
point of defining properties that influence the whole
device tree. For example: adding an constant list of
allowed parent node types to the specified node type can
result in satisfying the first structure constrain. When an
end user is adding new tree node into the structure (for
example a new FPGA device to ATCA crate), the
application checks if the ATCA device node can be a
parent of the FPGA device node.

Additional constraints were satisfied using the
Hibernate Validation framework with the use of JSR-3032
Java Annotations to simplify the validation layer of the
application.

USER INTERFACE
The application user interface was implemented as a

web page using Apache Struts 2 framework. To increase
the interface response time application depends heavily
on AJAX3 calls, which provided a significant interface
performance gain and allows for convenient tree
navigation directly from a web page.

SIGNALS DATABASE
The asset management system also include features

which facilitate management of the overall structure of
the accelerator. The signals database comprises of a set of
“signal” and “function” nodes which can be added to any
other node in the device structure.

Signals which are added to the specified node represent
actions which this node can generate. Signals are then
being used by functions which can also be assigned to any
node in the system. Functions are designed to transform
its input signals ie: take one signal as the input signal and
return other signal as the output.

The structure validation process ensures that every
signal present within the tree structure which is being
used as an output signal of any function is also being used
as an input signal by some other function. Therefore it

2
 JSR-303 – Java Specification Bean Validation standard.

3
 AJAX – Asynchronous Javascript And XML – technology used to

dynamically update fragments of a web page, using asynchronously
fetched content.

Figure 2: Java Class representation of the tree structure.

Proceedings of 2011 Particle Accelerator Conference, New York, NY, USA TUP040

Accelerator Technology

Tech 20: Infrastructure 881 C
op

yr
ig

ht
c ○

20
11

by
PA

C
’1

1
O

C
/I

E
E

E
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

assures that every signal present in the database is
actually needed by some other process.

In addition signals database may also be used as a mean
to report work progress on any particular activity (an
activity is represented as a signal).

OTHER FEATURES
Some of the application features, mostly concerning

firmware management, were also exposed as Web
Services in order to integrate with existing software used
to program devices present in the accelerator structure.

To provide firmware programming capability directly
from other machines present within the DESY network an
Java client software has been also developed. The client
software uses the Web Service Interface exposed by the
asset management application to provide means for
selecting the desired firmware to be loaded into FPGA
device and initiate the firmware loading process. The
client application also communicates with one of the
DOOCS servers in order to manage the firmware loading
stage.

To address performance issues present especially
during start-up and initialization phase of the accelerator
when hundreds of devices need to be programmed
simultaneously, a local caching mechanism was used, that
stores the currently used firmware on the device storage
itself.

CONCLUSIONS
The asset management system application is currently

being tested to manage hardware and software
components that are and will be present in the FLASH
and XFEL accelerators. It offers a significant
improvement in firmware management time and can be
used to keep track of changes within the device structure
of the accelerator and its internal wiring connections.

In addition, separate management modules were
included into the application which provide validation of
the device structure model by means of using Signals and
Functions.

ACKNOWLEDGEMENTS
The research leading to these results has received

funding from the Polish National Science Council Grant
642/N-TESLAXFEL/09/2010/0.

The authors are scholarship holders of the project
entitled ”Innovative education ...” supported by European
Social Fund.

REFERENCES
[1] A. Schwarz., “The European X-Ray free electron

laser project at DESY”. 26th Inter-national Free-
Electron Laser Conference, pages 85–89, August
2004..

[2] Deutsche Elektronen-Synchrotron. “X-Ray Free
Electron Laser”, Interim Report of the Scientific and
Technical Issues (XFEL-STI) Working Group on a
European XFEL Facility in Hamburg. Technical
report, Deutsche Elektronen-Synchrotron, January
2005.

[3] R. Brinkmann, K. Flottmann, J. Rossbach, P.
Schmuser, N. Walker, and H. Weise., Technical
design report, PART II-The accelerator. Deutsche
Elektronen-Synchrotron DESY, 2001.

[4] Johnson, Rod; Jürgen Höller, Alef Arendsen, Thomas
Risberg, and Colin Sampaleanu (2005). Professional
Java Development with the Spring Framework.
Wiley. ISBN 0-7645-7483-3.

[5] S. N. Simrock, “Low level radio frequency control
system for the european XFEL,” in Mixed Design of
Integrated Circuits and System,2006. MIXDES 2006.
Proceedings of the International Conference, Jun.
2006, pp. 79–84.

[6] Kamiński M., Makowski D., Mazur P., Murlewski J.,
Sakowicz B.: "Firmware application for LLRF
control system based on the Enterprise Service Bus",
CADSM 2009, Ukraina, ISBN 978-966-2191-05-9

TUP040 Proceedings of 2011 Particle Accelerator Conference, New York, NY, USA

882C
op

yr
ig

ht
c ○

20
11

by
PA

C
’1

1
O

C
/I

E
E

E
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Accelerator Technology

Tech 20: Infrastructure

