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Abstract

Using correlations at the cathode to tailor a beam’s
eigen-emittances is a recent concept made useful by the
symplectic nature of Hamiltonian systems such as beams
in accelerators. While introducing correlations does not
change the overall 6-dimensional phase space volume, it
can change the partitioning of this volume into the longi-
tudinal and two transverse emittances, which become these
eigen-emittances if all the initial correlations are unwound
and removed. In principle, this technique can be used to
generate beams with highly asymmetric emittances, such
as those needed for the next generation of very hard X-ray
free-electron lasers. This approach is based on linear cor-
relations, and its applicability will be limited by the magni-
tude of nonlinear effects in photoinjectors which will lead
to mixing in phase space that cannot be unwound down-
stream. Here, we review the eigen-emittance concept and
present a linear eigen-emittance design leading to a highly
partitioned, and transverse ultra-bright, electron beam. We
also present numerical tools to examine the evolution of
the eigen-emittances in realistic accelerator structures and
results indicating how much partitioning is practical.

INTRODUCTION

X-ray free electron lasers (XFELs), such as Los Alamos’
Matter and Radiation in Extremes (MaRIE) project [1] re-
quire transversely bright electron beams. One approach
to achieving the necessary low emittance in a dimen-
sion is via emittance exchange, in which a large emit-
tance may be partially transferred to a different dimen-
sion, using appropriate optics. This has been demonstrated
in the flat-beam transform [2, 3], which exchanges emit-
tance between transverse dimensions, and in tranverse-to-
longitudinal emittance exchange [4]. The general case of
emittance exchange between any two dimensions is dis-
cussed by Carlsten et. al. [5].

Motivated by these ideas, we investigate making two
transverse emittances small at the expense of the longitu-
dinal emittance, thus satisfying the emittance requirements
for next generation XFELs. Our goal is use the eigen-
emittance concept [6] to achieve two very small emittance
values. The beam eigen-emittance values are conserved
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during linear beam transport, after the beam is initially gen-
erated. For an uncorrelated beam, they coincide with the
three beam emittances. If correlations are introduced when
the beam is generated at the cathode such that two of the
eigen-emittances are very small, it should be possible to
remove these correlations and recover the eigen-emittances
as the emittance values, provided nonlinear effects are not
too large.

We search for cases with two small eigen-emittances
when the minimum number of correlations that may pro-
duce this case are present in the electron bunch. As this is
the least complicated scenario to produce two small eigen-
emittances, it will require the least optics to remove the
correlations from the beam. This report of our investiga-
tion is structured as follows. Firstly, we outline the the-
ory required to study correlations and their resulting eigen-
emittance values. This theory is then applied numerically
to investigate which combinations of correlations result in
two small eigen-emittance values. Finally, we discuss the
possibility of implementing these schemes to obtain trans-
versely bright electron beams.

BACKGROUND THEORY

In this section, we outline the coordinate system used,
and briefly describe the eigen-emittance concept and how
correlations can be treated theoretically.

We wish to make the two transverse emittances small
at the expense of the longitudinal emittance, so we work
with the full 6-dimensional phase-space. We use canoni-
cal coordinates, s = (x, px, y, py, z, pz), where px, py and
pz are the canonically conjugate momenta to the configu-
ration space coordinates, x, y and z, respectively. We use
dimensionless coordinates which are the deviations from a
reference trajectory, st, defined in the same manner as in
Carlsten et. al. [5], i.e.,

(x− xt)/l �→ x, (px − pxt)/δ �→ px,

(y − yt)/l �→ y, (py − pyt)/δ �→ py, (1)

(z − zt)/l �→ z, (pz − pzt)/δ �→ pz,

where l and δ are scaling factors for the position and mo-
mentum coordinates, respectively. We leave these scale
factors undefined, as we are simply interested in how
the eigen-emittance values change as correlations are in-
creased. The conversion from canonical coordinates to
more common coordinates, such as time and energy, are
discussed in detail by Carlsten et. al. [5].
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The Hamiltonian motion of a beam has three conserved
moments, which can be chosen as the quantities known
as the eigen-emittances. These eigen-emittances coincide
with the beam emittances when no correlations are present.
In practice, these quantities can simply be obtained from
the beam matrix as the absolute value of the eigenvalues,
λj , of the characteristic equation, det(JΣ − iλjI) = 0,
where I is the identity matrix and the only non-zero en-
tries in the matrix, J , are the 2 × 2 block diagonal entries
containing the skew-symmetric matrix,

J2 =

(
0 1
−1 0

)
. (2)

Both I and J have the same dimensionality as the phase-
space. A more detailed discussion of eigen-emittances is
provided by Dragt, Neri and Rangarajan [6].

We use the same approach described in Yampolsky et.
al. [7], extended to six dimensions. Correlations are intro-
duced via a matrix of the form,

C =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 c13 c14 c15 c16
0 0 c23 c24 c25 c26
c31 c32 0 0 c35 c36
c41 c42 0 0 c45 c46
c51 c52 c53 c54 0 0
c61 c62 c63 c64 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (3)

which we refer to as the C-matrix. Beginning with an ini-
tially uncorrelated beam, with beam matrix, Σ0, general
correlations between can be introduced using

Σ = (I + C)Σ0(I + C)T . (4)

As we wish to obtain two small eigen-emittances, a mini-
mum of two entries in the C-matrix will be required. These
two correlations must also couple all three (spatial) dimen-
sions.

Two individual correlations in the C-matrix can be intro-
duced via

Σ = (I + C2)(I + C1)Σ0(I + C1)
T (I + C2)

T

≡ (I + C)Σ0(I + C)T (5)

The order in which these are introduced may be important.
If C1 and C2 commute, then the correlations are indepen-
dent and the order is not important. If if C1 and C2 do
not commute, the order in which they are introduced deter-
mines whether they are dependent or independent. When
two correlations are independent, the C-matrix contains
two non-zero entries. When they are dependent, the num-
ber of non-zero entries in the C-matrix is three.

We discuss the results for a numerical analysis of this
approach in the following section.

RESULTS

We search for pairs of correlations that lead to two small
eigen-emittance values and one large. To do so, we nu-
merically vary the appropriate entries in the C-matrix using

Column Index
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1 2 3 4 5 6

R
ow

In
de

x

x 1
px 2
y 3
py 4
z 5
pz 6

Figure 1: Color chart of independent correlations leading
to two small eigen-emittances. Two entries in the C-matrix
need to be chosen, one from each block of the same color.
Black entries are not considered, as they do not correlate
two of the three dimensions. The column indices corre-
spond to the initial coordinates of the uncorrelated beam
and the row indices are the coordinates after the correla-
tions have been introduced.

Mathematica and examine the resulting eigen-emittances.
For dependent correlations, the final C-matrix is calculated
using Eq. (5). The number of cases to be evaluated can be
reduced by recognizing symmetries in the problem, such as
the cyclic permutations of the coordinates. For numerical
purposes, we begin with initial beam emittances 0.7/0.7/1.4
for the x/y/z emittances, which are equivalent to the eigen-
emittances in the initially uncorrelated beam. When we
discuss specific correlations, the final variable in the corre-
lated beam is the first in the pair and the initial variable that
introduces the correlation is the second, e.g. if only an x-y
correlation is used, the functional dependence is x(x0, y0).

We have found that it is possible to obtain two small
eigen-emittances for all dependent correlations and for
the combinations of independent correlations given by the
color chart of Fig. 1. The independent correlations which
lead to two small eigen-emittances are those in which the
coordinates of the correlated beam involved in introduc-
ing the correlations are canonically conjugate. The way in
which the eigen-emittances vary with increasing correla-
tions is illustrated in Fig. 2 for a case which leads to two
small eigen-emittance values.

We have found a number of cases that lead to our de-
sired result of two small eigen-emittances. We discuss the
possibilities of implementing these theoretical cases in the
following section.

DISCUSSION

We have found that combinations of two correlations can
lead to two small eigen-emittance values, however, it is not
as simple to find a scheme that may be physically realized.
While we can theoretically discuss correlations depending
on the beam momenta, no practical implementation cur-
rently exists. Angular momentum, in the form of px-y and

py-x correlations, is simple to introduce to a beam using a
solenoid providing magnetic field on the cathode, however
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Figure 2: x-y and px-z correlations are an example of a
case resulting in two small and one large eigen-emittance.
The variation of eigen-emittance values with increasing
correlation are shown here.

it is difficult to imagine a scheme in which one correlation
is introduced without the other and these two correlations
do not lead to two small eigen-emittances by themselves.
Initial investigation of combinations containing both these
correlations and a third indicate that they do not lead to two
small eigen-emittances, and support the findings of Yam-
polsky et. al. [7] which studied these correlations combined
with what is effectively a z-x correlation. Additionally, a
py-z or px-z correlation would be difficult to create at the
cathode.

Given the above, the only correlations that might be
physically realizable are the purple and green blocks of
Fig. 1. A pz-x or pz-y correlation could be obtained
by scanning a drive laser across a photocathode with fre-
quency modulation. This will also introduce z-x or z-y
correlations, respectively, however an initial study of more
than two correlations shows that it is still possible to obtain
two small eigen-emittances with these correlations present.
The respective z-y or z-x correlations that are needed to
produce two small eigen-emittances could be produced us-
ing a drive laser with a tilted pulse front, as in the scheme
described in Yampolsky et. al. [7] or a photo-cathode with
changing work function across the surface or recessed at an
angle, such as suggested in Carlsten et. al. [5].

The above discussion shows that a minimal independent
correlation scenario is difficult to implement, but a possi-
bility is using pz-x/y with z-y/x correlations. This leaves
the possibility of the dependent correlations. We have not
investigated adding additional correlations to two indepen-
dent correlations, so we limit the discussion to cases where
we only introduce two dependent correlations. Based on
the previous discussion, single correlations that we can rea-
sonably expect to introduce are correlations between the
coordinate variables and pz correlations that depend on one
of the transverse coordinates. Of these, a number of com-
binations could be possible. One that may be simple to im-
plement could be a laser pulse with a phase-front tilt with
an elliptical cathode, giving z-x and x-y correlations or z-y
and y-x correlations.

A remaining question is whether a large enough corre-
lation can be achieved to produce a small enough eigen-
emittance value. Transverse emittances for the MaRIE
XFEL need to be 0.15 μm or less, while a longitudinal
emittance of up to 180 μm is acceptable [5]. Whether the
necessary eigen-emittance values can be achieved with ac-
ceptable correlations that do not lead to extreme aspect ra-
tios in the beam is yet to be investigated. Additionally, if
these small eigen-emittance values can be achieved, it is
important that nonlinear effects are not large enough to sig-
nificantly alter the eigen-emittance values.

We have identified cases with promise to lead to two
small eigen-emittance values using numerical tools. Fur-
ther investigation into these cases is warranted, to make
sure they are able to be implemented practically.
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