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Abstract 
Digital beam position monitor (DBPM) system is one 

of the most important beam diagnostic instruments 
generally used in modern accelerators. The performance 
of DBPM is mainly given by its digital signal processing 
algorithm. In order to find out a better solution for our 
new DBPM system, two algorithms have been designed 
and implemented on a commercial FPGA based DAQ 
module (ICS1554) to retrieve the turn-by-turn (TBT) 
data. The first algorithm is based on frequency mixing, 
and the second one on discrete Fourier transform (DFT). 
Laboratory tests show that the standard deviation of 
measured positions can be better than 1μm at 5 dBm with 
input signal stronger than 5 dBm for both algorithms. And 
on-line evaluation indicates that real beam motion can be 
observed correctly using either algorithm. 

INTRODUCTION 

DBPM system has been widely used on accelerators 
around the world. The DBPM our storage ring uses 
undersampling technique to sample the signals from four 
beam electrodes with four ADCs at the rate of 
117.2799MHz, which is 169 times the storage ring 
revolution frequency. The undersampling results are four 

channel signals at 30.5344MHz (499.654 4×117.2799), 
mirrored from the 9th Nyquist zone. By taking digital 
down converters (DDCs) and a series of filters (such as 
CICs and FIRs) and decimations, TBT rate data (about 
694KHz) and lower frequency data (such as the 10KHz 
rate FA and the 10Hz rate SA data) can be obtained [1]. 

 Unlike the early BPMs, present DBPM is much more 
compact. Take Libera Brilliance for example, its 
functional block is displayed as shown in Figure.1. The 
conditioning and sampling of the signal are implemented 
on an analog board, and the digital signal processing in 
FPGA. This paper will discuss the designations and 
implementation of the digital signal processing algorithm, 
which determines the performance of the DBPM. A novel 
algorithm, which is based on the 169 points DFT has been 
developed on FPGA except for traditional processing 
algorithm. The hardware ICS-1554A-002(GE Corp.) is a 
PMC signal processing board containing four 160 MHz 
16-bits ADCs (Linear Technology LTC2209), a Xilinx 
Virtex-5 SX95T, and two FIFOs [2]. Tests have been 
carried out on signal generator and the storage ring to 
evaluate their performances.  

 

Figure 1: Block diagram of Libera Brilliance. 

ALGORITHM DESIGN 

The core of the BPM algorithm is DDC, which 
converts a digitized real signal from IF to basebanded. 
Two kinds of DDCs have been designed here to 
implement the down conversion function. 

The Traditional Algorithm 

Traditional mixing based DDC architecture is shown in 
Figure.2. It consists of the following subcomponents: a 
direct digital synthesizer (DDS), two multipliers, two 
low-pass filters (LPF), two downsamplers and a 
rectangular to polar (R2P) transformer.  

 

Figure 2: Traditional DDC architecture. 

The quality of DDS affects the DDC output spectra in 
two aspects. Firstly, the difference between the input 
signal central frequency and the DDS generated sinusoid 
signal frequency would introduce noise. Secondly, the 
noise caused by both the phase and amplitude 
quantization of the frequency synthesis process affects the 
noise floor of the DDC.  

In this paper, the 5 stage CIC decimation filter (13 
times decimation) and FIR decimation filter (13 times 
decimation) are applied to change the sample rate to the 
revolution.  

The Innovative Algorithm 

It is known that the resolution of 169 points DFT is 
4π/169, which equals the rate of revolution. So, the 
central spectra peak contains 4π/169 bandwidth signal 
information around central frequency with 1/2 revolution 
bandwidth on each side. By extracting the maximum 
amplitude value in each 169 points DFT, the signal can be 
down converted to the baseband. Then 169 points 
moving-average filter will be used in the next stage to 
filter out the high frequency signal. The diagram of this 
algorithm is showed in Figure.3. Figure.4 shows the 
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signal spectra after the extraction. The input signal comes 
from SSRF storage ring, which is in partial filling mode. 
It shows that the signal has been converted down to the 
baseband successfully.  

 

Figure 3: Block diagram of DFT based algorithm. 

 

Figure 4: Spectra of extracted signal. 

This algorithm has the advantage of simple architecture. 
The signal can be converted down the baseband without 
spectra being shifted. DDS and multipliers are not 
required. But the complexity and the massive requirement 
of resources of the 169 points full speed DFT are 
challenging.  

MATLAB Off-line Analysis Result 

Both algorithms have been simulated in MATLAB. 
Signals from generator and the SSRF storage ring have 
been sampled as input. Because only two RF band-pass 
filters are available,, only two channels (A and C) are 
sampled and calculated. Figure 5 shows the calculated 
position when input signal comes from storage ring. The 
result of mixing based algorithm shows a low-frequency 
vibration while the DFT based algorithm does not. So the 
low-frequency vibration from mixing based algorithm 
may be caused by the mixing introduced error. 

 

Figure 5: MATLAB off-line analysis results when data 
sampled from SSRF storage ring. 

Table.1 shows the standard deviation of the calculated 

position(x=10×(a c)/(a c)). Obviously, the DFT based 
algorithm gives a better performance.  

Table 1: Standard deviation comparison /μm 

Input signal Mixing based DFT based 

RF signal generator 0.94 0.79 

Storage beam 4.20 3.90 

IMPLEMENTATION OF THE 
INNOVATIVE ALGORITHM 

This section will focus on the implementation of the 
innovative 169 points DFT based algorithm without 
introducing the mixing based algorithm.  

The Applied Numerical Theory Study 

2-radix Fast Fourier Transform (FFT) could not be 
applied on the DFT calculation as 169≠2N. Numerical 
Theory then is studied for the implementation of 169 
points FFT. As 169=132, Winograd extended Rader’s 
algorithm [3] is a choice. Winograd extended the Rader 
algorithm to include prime-power DFT size pm. However, 
for composite size such as prime powers, the Cooley-
Tukey FFT algorithm [4] is much simpler and more 
practical to implement. Basic Rader algorithm [5] is 
typically used for large-prime base cases of Cooley-
Tukey’s recursive decomposition of the DFT.  

Cooley-Tukey algorithm re-expresses the DFT in terms 
of smaller DFTs of sizes 13 (169=13×13): 

   (1) 

Where W=e-j2π⁄169, N1 = N2 =13; n1, k1 = 0, 1,…,N1-1; 
n2, k2 = 0,1, … , N2-1. 

By applying Rader algorithm, the 13 DFT can be re-
expressed as a 12-points cyclic convolution. Since 
12=3×4, the 12-points cyclic convolution can be 
implemented as a two dimensional cyclic convolution by 
applying the method suggested by Agarwal and Cooley 
[6]. The numbers of multipliers needed to implement the 
cyclic convolution of N=3 and N=4 are 4 and 5, 
respectively. So the 12-points cyclic convolution needs 20 
(20=4×5) multiplications and the multiplication between 
the input real data and the Twiddle Factor needs two 
times of multiplications. As a result, the 13 points DFT 
requires at least 40 multipliers.   

Considering that only the central frequency is retained 
for later processing, calculating the whole 169 points is 
not necessary. The signal centre frequency from the ring 
is about 499.654 MHz, and the sway is limited to dozens 
of KHz. So the 44th (44 = 169×30.5344/117.2799) peak 
value is maximum. When Rader algorithm is applied on 
the 13 points DFT, the algorithm could not be pruned 
when the output is narrowband. On the contrary, direct 
implementation of 13 points DFT only needs 24 
multipliers (12 multiplications of real data and Twiddle 
Factors) when the output is one point.  

As 44= N2×k1+ k2, then k1=3, k1=5. The X44 calculate 

equation is  

     (2) 
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                 (3) 

Multiplication of two complexes requires at least 3 
multipliers. So X44 calculation needs 3×12+13×24=348 
multipliers at least.  

Algorithm Implementation 
Figure.6 (a) shows the block diagram of the pruned 169 

points DFT, which is based on Cooley-Tukey algorithm 
and outputs X44. It consists of three stages. The first stage 
includes 13 blocks of 13 DFT; the second stage is to 
multiply the outputs from the previous stage with a 
corresponding Twiddle Factor; the third stage is to get the 
sumation of the 13 values. Figure.6 (b) is the detailed 
flow graph of the 13 DFTs in Figure.6 (a). 

This algorithm costs massive resources and only two 
DDC channels (A and C) can be implemented in the 
FPGA.  

 

Figure 6: Block diagram for the calculation of X44 (a), and 
the flow graph of the pruned 13 DFT (b) with one output. 

ALGORITHM TESTS  

Algorithm tests have been carried out on both SSRF 
storage ring and signal generator. Output data were 
sampled from A and C channels. The module worked 
with fixed gain. In signal generator test, four input signals 
split by a 4-way power splitter were fed into ICS-1554A-
002. Input signal power ranged from -80 dBm to 15 dBm. 
Figure.7 shows corresponding position RMS value. It 
indicates that the resolutions of both algorithms are better 
than 1μm when input signal is stronger than 5dBm. The 
DFT based algorithm still shows better performance just 
as the simulation indicated. 

On-line test is carried out on the storage ring of SSRF 
with 500 bunches filled beam during injection operation. 
Front end board is set in fixed attenuation. The beam 
signal is from the spare probe of cell 16 (16BPM8).  
Figure.8 shows the spectra of channel A. Beam energy 
oscillation, horizontal betatron oscillation and vertical 
betatron oscillation have been monitored correctly using 
on-line Libera Brilliance as reference. At the same time, 
noise can be observed in mixing based algorithm. The 
noise is introduced by the difference of central frequency 
between DDS and storage ring signal. This difference 
leads to worse performance of the mixing based algorithm. 

 

Figure 7: Standard deviation of the laboratory test. 

  

Figure 8:  Spectra of channel A output. 

CONCLUSIONS 

  In this paper, we have designed and implemented two 
BPM signal processing algorithms. The first one is based 
on mixing, and the second one is based on DFT. 
Laboratory tests indicate that the resolutions of both 
algorithms are better than 1μm when input signal is 
stronger than 5dBm. Real beam motion can be monitored 
correctly by using either algorithm. However, the 169-
points DFT based algorithm shows better performance 
than the mixing based one. But only two channels are 
available because of the massive requirement of resources 
for the DFT algorithms, while the mixing based algorithm 
can meet the four channels requirement in DBPM, whose 
performance can be improved by supplying more precise 
DDS. 
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