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Abstract 
 The University of Maryland Electron Ring (UMER) 

[1] is a research accelerator designed to operate with 
extreme space charge. Recent high-precision experimental 
measurements of tune, dispersion, chromaticity, response 
matrix elements, and other parameters [2-4] have 
prompted a refinement of the models used to describe the 
machine.  Due to the low energy (10 keV) of the 
electrons, the dipole and quadrupole magnets used are air-
core printed-circuit coils whose fields we calculate using 
a Biot-Savart solver.  Different levels of approximations 
for the magnetic fields have been developed.  The simple 
models are compared against simulations using the 
particle-in-cell code WARP [5], the accelerator code, 
Elegant [6], as well as experiments. The improved 
modeling has significantly reduced the discrepancies 
between simulation and experiment. 

INTRODUCTION 
High beam quality, described by a dense, compact 

phase space, is critical for many modern accelerator 
applications.  The University of Maryland Electron Ring 
(UMER) [1] is a small storage ring dedicated to research 
on beams at the intensity frontier.  The low electron 
energy (10 keV), relatively high current (0.5-100 mA), 
and low rms emittance (0.3-3 µm, normalized) contribute 
to significant space charge forces that dominate the beam 
dynamics.  The simulation models previously used to 
describe the UMER lattice were successful in modeling 
first-turn experiments (e.g., Refs. [7, 8]).  Studies of beam 
physics over longer propagation distances, however (e.g., 
to investigate resonances), require a higher level of 
accuracy. 

Recent high-precision experimental measurements of 
tune, dispersion, chromaticity, and other parameters (Sec. 
3.4) [2-4] have therefore prompted a refinement of these 
models.  For example, simple calculations of tune have 
differed by as much as 0.5 from the measured values.  The 
discrepancy arose from uncertainties in modeling the 
bending dipoles and the injection “Y-section”.  We have 
therefore reexamined the magnet models in detail in order 
to understand how to better represent the lattice. 

To validate the models, we have devised a method for 
extracting the focal lengths of the magnets from response 
matrix measurements.  This is discussed at length as it is 
of general interest.  We also compare different levels of 
approximation of the lattice models using the codes 

WARP [5] and Elegant [6].  The improved modeling has 
significantly reduced the discrepancies between 
simulation and experiment. 

UMER MAGNET MODELS 
Due to the low beam energy, the dipole and quadrupole 

magnets used in UMER are air-core printed-circuit coils 
in which the fringe fields are dominant [9-10].  These 
magnets were carefully designed to minimize the 
integrated nonlinearities.  For beam dynamics 
calculations, different levels of approximations for the 
magnetic fields have been developed.  The most detailed 
calculate the fields using a Biot-Savart solver on an 
arbitrarily-fine grid, which can then be used in WARP.  It 
is also desirable to derive simpler models, for example to 
use with TRACE3d for beam matching.  For the ring 
quadrupoles, we have extensively compared different 
models and found that a hard-edge model suffices for 
accurate calculations.  The dipoles, however, are more 
problematic, because the beam trajectories can deviate 
substantially from the nominal, particularly due to 
modifications to the closed-orbit from the Earth’s 
magnetic field.  For example, Figure 1 illustrates the 
effects of neglecting the dipole and/or the Earth field on 
the beam envelope. 
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Figure 1: Effect of dipole and Earth field on envelope of a 
23 mA beam in two FODO periods:  quadrupoles only 
(black dashed); dipole added but no Earth field (blue 
dotted); with both dipole and a 0.4 G vertical Earth field 
(red solid).  In the last case, the dipole strength is adjusted 
to compensate for the Earth field.  
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We have found it possible to model the dipole as a thin 
lens and still obtain good predictions of tune values, but 
the focusing terms in the dipoles must be calculated 
properly.  The largest contribution to the gradient is edge 
focusing, which manifests in the vertical plane, but is 
cancelled in the horizontal plane by the geometric 
focusing [11].  In addition, there is a smaller contribution 
due to the sextupole term and the horizontally curved 
trajectory in a straight-edge dipole.  Although, by design, 
the sextupole component disappears when integrated 
along the dipole axis, a beam moving along the curved 
reference trajectory will experience a gradient.  We have 
quantified this effect by fitting polynomials to the radial 
profile of By to obtain the sextupole term S(s), from which 
we then estimate the horizontal focusing gradient using 
the relation gx(s) = 2S(s)x(s).  The vertical integrated 
gradient is obtained directly from the polynomial fit to B⊥ 
(defined as the normal in the horizontal plane to the 
reference trajectory through the dipole).  From the 
integrated gradients, we obtain the focal lengths: 

gds1
f [B ]
=

ρ
∫ .    (1) 

Note that in order to compensate for the Earth field, the 
dipole strength is adjusted to maintain the same average 
bending angle per section, and the dipole focusing is 
accordingly reduced.   

EXPERIMENTAL AND NUMERICAL 
VALIDATION 

We have validated this model in two ways.  First, we 
used the WARP code to integrate particle orbits using the 
detailed first-principles field descriptions.  Second, we 
derived the focal length from experimental measurements 
of the response matrix in the first turn of the ring, where 
the lattice is periodic and the measurement is not 
complicated by traversal of the injection Y section.   

The simulation test (using the WARP-XY slice code) 
involved running narrow lines of parallel particles with 
zero divergence, low current (10-9 A), and miniscule 
emittance (10-15) through the different magnets to test 
their focusing effects.  It was found that a step of 0.25 mm 
was needed to resolve the fringe fields.  The most detailed 
model tested was a gridded field with 0.5 mm resolution 
generated from the full double-layer spiral geometry of 
the dipole.  This was only slightly more accurate than a 
simpler single layer of loops instead of spirals, the two 
differing by only 0.02% in the gradients.  To verify the 
WARP bending algorithm, we additionally tested a sector 
dipole and a box dipole, both of which behaved as 
expected from theory. 

Figure 2 illustrates the trace space before and after 
passage through the dipole.  The focal length associated 
with dipole focusing is measured directly from the 
rotation of the phase space. 
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Figure 2: Trace space plots before entry (left) and after 
exit (right) from the double-layer spiral dipole.  Initial 
particle distribution has large size in Y to test vertical 
focusing (top), and in X to test horizontal focusing 
(bottom). 

 
Measuring the dipole focusing from experiment is more 

involved.  We rely on a method for measuring the lattice 
phase advance from response matrix data, similar to Ref. 
[12].  We analyze the data differently, however, in order 
to minimize the effects of spurious data points caused by 
distribution of ambient magnetic fields, BPM errors, and 
other local errors.  For each dipole-BPM pair, we gather 
position data for seven different dipole settings.  The 
slope of the linear fit is the response matrix element.  
Dipole settings for which the centroid is measured further 
than 5 mm from the pipe axis are thrown away to improve 
the linearity of the fit.  Rather than include all the 
response matrix elements in the phase advance 
calculation, we reduce the data in each diagonal to the 
median of that diagonal (Figure 3).  This ensures that 
spurious data points do not affect the calculation and 
ignores cell to cell variations.   

 
Figure 3: Horizontal 1st-turn response matrix elements (in 
mm/A) along the main diagonal, corresponding to dipoles 
16 cm upstream of BPMs.  The median method eliminates 
the effect of incorrect calibration of the last two BPMs. 

 
Next, the medians of each diagonal are plotted as a 

function of the distance between dipoles and BPMs for 
that diagonal (Figure 4).  This essentially samples a 
betatron oscillation.  To this we fit a sinusoid, the 
frequency of which corresponds to the lowest-order 
Fourier component of the sampled betatron oscillation.  
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The phase advance is then calculated from σe = kSo, 
where So = 0.32 m is the lattice period and k the 
wavenumber obtained from the fit.   

 
Figure 4: Vertical response matrix diagonal medians as a 
function of dipole/BPM distance.  The phase advance can 
be obtained from the frequency of the sinusoidal fit. In 
fitting, we ignore the last 4 data points corresponding to 
the shortest diagonals, whose values are skewed by the 
faulty calibration of the last two BPMs. 

 
The phase advance measured by this method includes 

the effect of image forces.  To get the zero-current phase 
advance, the value must be corrected using [13]: 

2
2

o e 2

KS
b

σ = σ + ,   (2) 

where K is the generalized perveance and b the pipe 
radius. 

The focal length of the dipole is calculated by 
considering the transfer matrix of a cell consisting of two 
quadrupoles whose strength is known and a dipole as a 
thin lens of focal length f.  The latter is derived from the 
measured phase advance:  

[ ]
12

o

M
f

Tr M 2cos
=

− s
,   (3) 

where M is the transfer of the FODO cell without the 
dipole. 

Comparing the dipole focal lengths obtained by the 
different methods, Table 1 shows good agreement 
between the first-principles calculation from the 
integrated gradient and the WARP simulation.  The 
experimental data shows somewhat stronger dipole 
focusing, especially in the horizontal direction.  We 
expect that the recent installation of new printed circuit 
quadrupoles, the improved quality of the response matrix 
data due to repair of some BPMs, as well as better 

steering optimization, will reduce the experimental 
uncertainty.   

 
Table 1.  Inverse focal lengths of the ring dipoles (1/f, 
units: m-1) from first-principles theory, WARP, and values 
derived from response matrix experiments, for a bend 
angle of 10° (no Earth field) or 7.8° (with Earth field).  
 No Earth Field Vertical Earth 

Field = 0.4 G 
 y x y x 
Theory 0.495 0.129 0.386 0.101 
WARP Simulation 0.566 0.133 0.333 0.10 
Experiment Fit   0.46±0.1 0.20±0.1 
 

CONCLUSION 
We have demonstrated a procedure for analyzing the 

focusing from air-core dipole magnets from first-
principles.  The derived focal lengths are systematically 
compared against WARP simulations and experimental 
data.  We have also shown a systematic procedure for 
measuring the phase advance and dipole focal lengths 
from response matrix experiments.  The improved 
modeling of the UMER dipoles has succeeded in reducing 
the tune discrepancies between calculation and 
experiment to within 0.1.  We are currently applying a 
similar approach towards reducing the uncertainties in 
modeling the Y-section injection magnets, consisting of a 
pulsed dipole and oversized, pulsed quadrupoles, one of 
which is significantly offset from the reference beamline.   
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