Sources and Medium Energy Accelerators
Accel/Storage Rings 07: Electrostatic Accelerators
Paper Title Page
WEP207 Progress Towards A Novel Compact High Voltage Electrostatic Accelerator 1876
 
  • P. Beasley, O. Heid
    Siemens AG, Healthcare Technology and Concepts, Erlangen, Germany
 
  A proof-of-principle demonstrator system has been successfully built and tested. It is based on a Cockcroft-Walton (or Greinacher) cascade but has been developed using a different design philosophy and using modern materials. This can then enable this compact accelerator configuration to operate at much higher voltage gradients. This paper explores the progress made to-date and future plans to utilize the technology to develop one such concept for an energy efficient 10 MV, 100 microamp, tandem proton accelerator, with less than a 2 square meter footprint .  
 
WEP208 Design of an Antiproton Recycler Ring 1879
 
  • A.I. Papash, G.A. Karamysheva, A.V. Smirnov
    MPI-K, Heidelberg, Germany
  • O. Karamyshev
    JINR/DLNP, Dubna, Moscow region, Russia
  • H. Knudsen
    Aarhus University, Aarhus, Denmark
  • A.I. Papash
    JINR, Dubna, Moscow Region, Russia
  • M.R.F. Siggel-King
    The University of Liverpool, Liverpool, United Kingdom
  • C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: Work supported by the EU under contract PITN-GA-2008-215080, the Helmholtz Association of National Research Centers (HGF) under contract VH-NG-328, and the GSI Helmholtz Centre for Heavy Ion Research.
At present, the only place in the world where experiments utilising low-energy antiprotons can be performed is the AD at CERN. The MUSASHI trap, as part of the ASACUSA collaboration, enables access to antiproton energies in the order of a few hundreds of eV. Whilst MUSASHI produces cutting-edge research, the available beam quality and luminosity is not sufficient for collision experiments on the level of differential cross sections. A small electrostatic ring, and associated electrostatic acceleration section, is being designed and developed by the QUASAR Group. It will serve as a prototype for the future ultra-low energy storage ring (USR), to be integrated at the facility for low-energy antiproton and ion research (FLAIR). This small AD recycler ring will be unique due to its combination of size, electrostatic nature and energy of the circulating particles. In this contribution, the design of the ring is described and details about the injection section are given.