Light Sources and FELs
Tech 07: Superconducting RF
Paper Title Page
THP077 SC Quadrupole for Cryomodule for ERL/ILC 2276
 
  • A.A. Mikhailichenko
    CLASSE, Ithaca, New York, USA
 
  Funding: NSF
We are considering the SC quadrupole where the field formed not only by the current distributions, but with the poles also. This delivers a good quality field in all aperture allowing compact and inexpensive design. This type of quadrupole designed for Cornell ERL could be recommended for ILC also.
 
 
THP211 Design Features and Construction Progress of 500-Mhz Rf Systems for the Taiwan Photon Source 2513
 
  • Ch. Wang, L.-H. Chang, M.H. Chang, C.-T. Chen, L.J. Chen, F.-T. Chung, F. Z. Hsiao, M.-C. Lin, Y.-H. Lin, C.H. Lo, G.-H. Luo, M.H. Tsai, T.-T. Yang, M.-S. Yeh, T.-C. Yu
    NSRRC, Hsinchu, Taiwan
  • M.C. Lee
    SSRF, Shanghai, People's Republic of China
 
  The accelerator complex of the Taiwan Photon Source (TPS) consists of two 500-MHz RF systems: one RF system with KEKB-type single-cell SRF modules is used for the 3-GeV storage ring of circumference 518 m, and the other with five-cell Petra cavities at room temperature is for the concentric full-energy booster synchrotron. This overview of the construction of the 500-MHz RF systems for the TPS is presented with emphasis on our strategy to approach the expectation of highly reliable SRF operation of the TPS. How to complete the construction project on time, on budget and on performance is our unique concern.  
 
THP212 Superconducting Cavity Design for Short-Pulse X-Rays at the Advanced Photon Source 2516
 
  • G.J. Waldschmidt, B. Brajuskovic, R. Nassiri
    ANL, Argonne, USA
  • G. Cheng, J. Henry, J.D. Mammosser, R.A. Rimmer, H. Wang
    JLAB, Newport News, Virginia, USA
 
  Funding: Work supported by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
Superconducting cavities have been analyzed for the short-pulse x-ray (SPX) project at the Advanced Photon Source (APS). Due to the strong damping requirements in the APS storage ring, single-cell superconducting cavities have been designed. The geometry has been optimized for lower-order and higher-order mode damping, reduced peak surface magnetic fields, and compact size. The integration of the cavity assembly, with dampers and waveguide input coupler, into a cryomodule will be discussed.