Colliders
Accel/Storage Rings 11: e-coolers and Cooling Techniques
Paper Title Page
THP082 Design Aspects of an Electrostatic Electron Cooler for Low-energy RHIC Operation 2288
 
  • A.V. Fedotov, I. Ben-Zvi, J. Brodowski, X. Chang, D.M. Gassner, L.T. Hoff, D. Kayran, J. Kewisch, B. Oerter, A. Pendzick, S. Tepikian, P. Thieberger
    BNL, Upton, Long Island, New York, USA
  • L.R. Prost, A.V. Shemyakin
    Fermilab, Batavia, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Electron cooling was proposed to increase the luminosity of RHIC operation for heavy ion beam energies below 10 GeV/nucleon. The electron cooling system needed should be able to deliver an electron beam of adequate quality in a wide range of electron beam energies (0.9-5 MeV). An option of using an electrostatic accelerator for cooling heavy ions in RHIC was studied in detail. In this paper, we describe the requirements and options to be considered in the design of such a cooler for RHIC, as well as the associated challenges. The expected luminosity improvement and limitations with such electron cooling system are also discussed.