Applications of Accelerators, Tech Transfer, Industry
Dynamics 05: Code Development and Simulation Techniques
Paper Title Page
THP046 Characterization of an SRF Gun: A 3D Full Wave Simulation 2205
 
  • E. Wang
    PKU/IHIP, Beijing, People's Republic of China
  • I. Ben-Zvi
    BNL, Upton, Long Island, New York, USA
  • J. Wang
    CST of America, Wellesley Hills, Massachusetts, USA
 
  Funding: Work supported by Brookhaven science Associates, LLC Contract No.DE-AC02-98CH10886 with the U.S.DOE
We characterized a BNL 1.3GHz half-cell SRF gun is tested for GaAs photocathode. The gun already was simulated several years ago via two-dimensional (2D) numerical codes (i.e., Superfish and Parmela) with and without the beam. In this paper, we discuss our investigation of its characteristics using a three dimensional (3D) full-wave code (CST STUDIO SUITE™).The input/pickup couplers are sited symmetrically on the same side of the gun at an angle of 180⁰. In particular, the inner conductor of the pickup coupler is considerably shorter than that of the input coupler. We evaluated the cross-talk between the beam (trajectory) and the signal on the input coupler compared our findings with published results based on analytical models. The CST STUDIO SUITE™ also was used to predict the field within the cavity; particularly, a combination of transient/eigenmode solvers was employed to accurately construct the RF field for the particles, which also includes the effects of the couplers. Finally, we explored the beam’s dynamics with a particle in cell (PIC) simulation, validated the results and compare them with 2D code result.