Applications of Accelerators, Tech Transfer, Industry
Applications 03: Transmutation and Power Generation
Paper Title Page
MOOBN3 Comparison of Accelerator Technologies for use in ADSS 4
 
  • W.-T. Weng, H. Ludewig, D. Raparia, M. Todosow, D. Trbojevic
    BNL, Upton, Long Island, New York, USA
  • P.M. McIntyre, A. Sattarov
    Texas A&M University, College Station, Texas, USA
 
  Funding: Work performed under the auspices of the US Department of Energy
Accelerator Driven Subcritical (ADS) fission is an interesting candidate basis for nuclear waste transmutation and for nuclear power generation. ADS can use either thorium or depleted uranium as fuel, operate below criticality, and consume rather than produce long-lived actinides. A case study with a hypothetical, but realistic nuclear core configuration is used to evaluate the performance requirements of the driver proton accelerator in terms of beam energy, beam current, duty factor, beam distribution delivered to the fission core, reliability, and capital and operating cost. Comparison between a CW IC and that of an SRF proton linac is evaluated. Future accelerator R&D required to improve each candidate accelerator design is discussed.
 
slides icon Slides MOOBN3 [1.540 MB]  
 
WEOAS1 Inertial Fusion Driven by Intense Heavy-Ion Beams 1386
 
  • W. M. Sharp, J.J. Barnard, R.H. Cohen, M. Dorf, A. Friedman, D.P. Grote, S.M. Lund, L.J. Perkins, M.R. Terry
    LLNL, Livermore, California, USA
  • F.M. Bieniosek, A. Faltens, E. Henestroza, J.-Y. Jung, A.E. Koniges, J.W. Kwan, E. P. Lee, S.M. Lidia, B.G. Logan, P.N. Ni, L.R. Reginato, P.K. Roy, P.A. Seidl, J.H. Takakuwa, J.-L. Vay, W.L. Waldron
    LBNL, Berkeley, California, USA
  • R.C. Davidson, E.P. Gilson, I. Kaganovich, H. Qin, E. Startsev
    PPPL, Princeton, New Jersey, USA
  • I. Haber, R.A. Kishek
    UMD, College Park, Maryland, USA
 
  Funding: Work performed under the auspices of the US Department of Energy by LLNL under Contract DE-AC52-07NA27344, by LBNL under Contract DE-AC02-05CH11231, and by PPPL under Contract DE-AC02-76CH03073.
Intense heavy-ion beams have long been considered a promising driver option for inertial-fusion energy production. This paper briefly compares inertial confinement fusion (ICF) to the more-familiar magnetic- confinement approach and presents some advantages of using beams of heavy ions to drive ICF instead of lasers. Key design choices in heavy-ion fusion (HIF) facilities are discussed, particularly the type of accelerator. We then review experiments carried out at Lawrence Berkeley National Laboratory (LBNL) over the past thirty years to understand various aspects of HIF driver physics. A brief review follows of present HIF research in the US and abroad, focusing on a new facility, NDCX-II, being built at LBNL to study the physics of warm dense matter heated by ions, as well as aspects of HIF target physics. Future research directions are briefly summarized.
 
slides icon Slides WEOAS1 [18.657 MB]  
 
THP027 Status and Development of a Proton FFAG Accelerator at KURRI for ADSR Study 2172
 
  • Y. Kuriyama, Y. Ishi, J.-B. Lagrange, Y. Mori, R. Nakano, T. Planche, T. Uesugi, E. Yamakawa
    KURRI, Osaka, Japan
  • Y. Niwa, K. Okabe, I. Sakai
    University of Fukui, Faculty of Engineering, Fukui, Japan
 
  In Kyoto University Research Reactor Institute (KURRI), the fixed-field alternating gradient (FFAG) proton accelerator has been constructed to make an experimental study of accelerator driven sub-critical reactor (ADSR) system with spallation neutrons produced by the accelerator. The world first ADSR experiment has been carried out in March of 2009. The proton FFAG accelerator consists of three FFAG rings; injetor (spiral sector FFAG), booster(radial sector FFAG) and main ring(radial sector FFAG), respectively. In March 2010, the experiment conducted with a thorium-loaded accelerator driven system using the proton FFAG accelerator has also been carried out. In order to increase the beam intensity of the proton FFAG accelerator, a new injector with H ions is under construction. In this scheme, H ions accelerated up to the energy of 11 MeV with a linac are injected into the main ring with charge-exchange injection. In this paper, the details of ADSR experiments with the proton FFAG accelerator at KURRI, and also the R&Ds of the accelerator will be presented.  
 
THP029 Temperature and Optimize Design of Beam Window in the Accelerator 2175
 
  • J.J. Tian, H. Hao, G. Liu, H.L. Luo, X.Q. Wang, H.L. Wu
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  Careful evaluation of the heat-transfer and corresponding problems is important in the beam window in the design and operation of Accelerator Driven sub-critical System (ADS). Using the Monte-Carlo code Fluka, we studied the energy deposition of the beam window in high power proton accelerator. The temperature distribution of the beam window is calculated in presence of the coolant. The process of computation for various materials will be introduced, and an optimized design scheme is given. The results suggest that some measures could be used to reduce the damage to the beam window, such as dividing current into branch currents, expanding the bunch or using beryllium as the material of the beam window, et al.  
 
THP030 GEANT4 Studies of the Thorium Fuel Cycle 2178
 
  • C. Bungau
    Manchester University, Manchester, United Kingdom
  • R.J. Barlow
    UMAN, Manchester, United Kingdom
  • A. Bungau, R. Cywinski
    University of Huddersfield, Huddersfield, United Kingdom
 
  Thorium “fuel” has been proposed as an alternative to uranium fuel in nuclear reactors. New GEANT4 developments allow the Monte Carlo code to be used for the first time in order to simulate the time evolution of the concentration of isotopes present in the Thorium fuel cycle. A full study is performed in order to optimise the production of Uranium-233 starting with "pure" Thorium fuels, leading to levels of Uranium-233 which ensure the operation of the nuclear reactor in a regime close to criticality.  
 
THP034 Accelerators for Subcritical Molten Salt Reactors 2181
 
  • R.P. Johnson
    Muons, Inc, Batavia, USA
  • C. Bowman
    ADNA, Los Alamos, New Mexico, USA
 
  Funding: Supported in part by Accelerator Technologies Inc.
Accelerator parameters for subcritical reactors that have been considered in recent studies * are based on using solid nuclear fuel much like that used in all operating critical reactors as well as the thorium-burning accelerator-driven energy amplifier ** proposed by Rubbia et al. An attractive alternative reactor design that used molten salts was experimentally studied at ORNL in the 1960s, where a critical molten salt reactor was successfully operated using enriched U235 or U233 tetrafluoride fuels ***. These experiments give confidence that an accelerator-driven subcritical molten salt reactor will work as well or better than conventional reactors, having better efficiency due to their higher operating temperature and having the inherent safety of subcritical operation. Moreover, the requirements to drive a molten salt reactor are considerably relaxed compared to a solid fuel reactor, especially regarding accelerator reliability and spallation neutron targetry, to the point that the required technology exists today.
* http://www.er.doe.gov/hep/files/pdfs/ADSWhitePaperFinal.pdf
** http://wikipedia.org/wiki/Energy_amplifier
*** Paul N. Haubenreich and J. R. Engel, Nuc. Apps & Tech, 8, Feb. 1970