Accelerator Technology
Tech 19: Collimation and Targetry
Paper Title Page
TUP265 A Solenoid Capture System for a Muon Collider 1316
 
  • H.G. Kirk, R.C. Fernow, N. Souchlas
    BNL, Upton, Long Island, New York, USA
  • J.J. Back
    University of Warwick, Coventry, United Kingdom
  • C.J. Densham, P. Loveridge
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
  • X.P. Ding
    UCLA, Los Angeles, California, USA
  • V.B. Graves
    ORNL, Oak Ridge, Tennessee, USA
  • T. Guo, F. Ladeinde, V. Samulyak, Y. Zhan
    SUNY SB, Stony Brok, New York, USA
  • K.T. McDonald
    PU, Princeton, New Jersey, USA
  • R.J. Weggel
    Particle Beam Lasers, Inc., Northridge, California, USA
 
  Funding: This work was supported in part by the US DOE Contract No. DE-AC02-98CH10886.
The concept for a muon-production system for a muon collider or neutrino factory calls for an intense 4-MW-class proton beam impinging upon a free-flowing mercury jet immersed in a 20-T solenoid field. This system is challenging in many aspects, including magnetohydrodynamics of the mercury jet subject to disruption by the proton beam, strong intermagnetic forces, and the intense thermal loads and substantial radiation damage to the magnet coils due to secondary particles from the target. Studies of these issues are ongoing, with a sketch of their present status given here.
 
 
WEODS2 High-Power Targets: Experience and R&D for 2 MW 1496
 
  • P. Hurh
    Fermilab, Batavia, USA
  • O. Caretta, T.R. Davenne, C.J. Densham, P. Loveridge
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
  • N. Simos
    BNL, Upton, Long Island, New York, USA
 
  High-power particle production targets are crucial elements of future neutrino and other rare particle beams. Fermilab plans to produce a beam of neutrinos (LBNE) with a 2.3 MW proton beam (Project X). Any solid target is unlikely to survive for an extended period in such an environment - many materials would not survive a single beam pulse. We are using our experience with previous neutrino and antiproton production targets, along with a new series of R&D tests, to design a target that has adequate survivability for this beamline. The issues considered are thermal shock (stress waves), heat removal, radiation damage, radiation accelerated corrosion effects, physics/geometry optimization and residual radiation.