Author: Zhou, Z.R.
Paper Title Page
MOP176 Design of Cavity Beam Quadrupole Moment Monitor at HLS 417
 
  • Q. Luo, Q.K. Jia, B.G. Sun, Z.R. Zhou
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  Funding: Work supported by the Natural Science Foundation of China, National “985 Project”, China Postdoctoral Science Foundation and “the Fundamental Research Funds for the Central Universities”
Traditional ways to get beam emittance of linacs, such as multi-slits method, are destructive and then not able to be used in on-line beam diagnostics. To meet the requirements of XFEL equipments and improve the quality of electron beam, non-destructive on-line beam emittance measurement methods basing on getting the quadrupole moment of a beam non-destructively are then required. An advanced way to pick up beam information non-destructively with great precision is making use of eigenmodes of resonant cavities. High brightness injector at Hefei light source is used to study FEL based on photocathode RF electron gun. Cavity beam quadrupole moment monitor system designed for the high brightness injector consists of a square pill-box cavity used to pick up quadrupole signal, a cylindrical pill-box reference cavity, a waveguide coupling network that can suppress monopole and dipole signal, and a superheterodyne receiver used as front-end signal processing system. The whole system works at 5.712 GHz. Strength of quadupole magnets is adjust to construct a matrix which can be used to work out beam parameters.
 
 
MOP177 Design and Cold Test of Re-entrant Cavity BPM for HLS 420
 
  • Q. Luo, Q.K. Jia, B.G. Sun, Z.R. Zhou
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  Funding: Supported by Natural Science Foundation of China, National 985 Project, China Postdoctoral Science Foundation and the Fundamental Research Funds for the Central Universities
An S-band cavity BPM is designed for a new injector in National Synchrotron Radiation Laboratory. A re-entrant position cavity is tuned to TM110 mode as position cavity. Theoretical resolution of the BPM is 31 nm. A prototype cavity BPM system is manufactured for cold test. Wire scanning method is used to calibrate the BPM and estimate the performance of the on-line BPM system. Cold test results showed that position resolution of prototype BPM is better than 3 μm. Cross-talk has been detected during the cold test. Racetrack cavity can be used to suppress cross-talk. Ignoring nonlinear effect, transformation matrix is a way to correct cross-talk.
 
 
WEP104 Transverse Feedback System and Instability Analysis at HLS 1674
 
  • J.H. Wang, Y.B. Chen, W. Li, L. Liu, M. Meng, B.G. Sun, L. Wang, Y.L. Yang, Z.R. Zhou
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  In this paper, we introduce the BxB transverse feedback systems at Hefei Light Source (HLS), which employ an analog system and a digital system. The experiment result of two systems. as well as the primary analysis of beam instability in HLS injection and operation are also presented in this paper.