Author: Yeremian, A.D.
Paper Title Page
THOBN5 Design and Testing of Advanced Photonic Bandgap (PBG) Accelerator Structures 2071
 
  • B.J. Munroe, M.A. Shapiro, R.J. Temkin
    MIT/PSFC, Cambridge, Massachusetts, USA
  • V.A. Dolgashev, S.G. Tantawi, A.D. Yeremian
    SLAC, Menlo Park, California, USA
  • R.A. Marsh
    LLNL, Livermore, California, USA
 
  Photonic Band-gap (PBG) structures continue to be an area of promising research for high gradient accelerators with wakefield suppression. Experimental results on an 11.4 GHz PBG structure tested at high power and high repetition rate at SLAC have shown that high gradients can be achieved in these structures. For PBG structures with thin rods, however, pulsed heating of the inner row of rods is a problem. Following these preliminary results, two new PBG structures have been designed. One structure, designated 1C-SW-A5.65-T4.6-Cu-PBG2-SLAC1, utilizes elliptical inner rods to reduce pulsed heating to an acceptable level; it will be tested at SLAC. A second PBG structure with round rods will be tested at 17.1 GHz at MIT. The MIT research will use the improved diagnostic access of the PBG structure to obtain a better understanding of the breakdown process. We will present preliminary results for the design and testing of these PBG structures.  
slides icon Slides THOBN5 [0.752 MB]