Author: Yater, J.E.
Paper Title Page
THP205 Modeling the Performance of a Diamond Current Amplifier for FELs 2507
 
  • K. L. Jensen, B. Pate, J.L. Shaw, J.E. Yater
    NRL, Washington, DC, USA
  • J.J. Petillo
    SAIC, Billerica, Massachusetts, USA
 
  Funding: We gratefully acknowledge funding by the Joint Technology Office and the Office of Naval Research.
A diamond current amplifier concept can reduce demands made of photocathodes under development for high performance Free Electron Lasers (FELs) by augmenting the charge per bunch (i.e., increasing the apparent QE of the photocathode) by employing secondary emission amplification in a diamond flake*. The characteristics of the bunch that emerges from the diamond flake is dependent on properties of the diamond (e.g., impurity concentrations) and the conditions under which it is operated (e.g., voltage drop, space charge, temperature)**. A study of the electron bunches produced by an incident 3-5 keV beam striking a very thin diamond and its transport under bias subject to scattering and space charge forces is considered. The quantities of greatest interest are then the yield, the transit time, emittance, and the rise/fall characteristics of the emerging bunch. These are simulated using Monte Carlo techniques, the application of which shall be described as it applies to the initial generation of the secondary electrons followed by their scattering and transport in the presence of band bending and space charge.
*J.E. Yater, et al., IEEE IVNC (2009); J. L. Shaw, et al., ibid.
**K.L. Jensen, et al. J. Appl. Phys. 108, 044509 (2010).