Author: Xia, G.X.
Paper Title Page
MOP108 Simulation Study of Proton-Driven PWFA Based on CERN SPS Beam 301
 
  • G.X. Xia, A. Caldwell
    MPI-P, München, Germany
  • C. Huang
    LANL, Los Alamos, New Mexico, USA
  • W.B. Mori
    UCLA, Los Angeles, California, USA
 
  We have proposed an experimental study of the proton-driven plasma wakefield acceleration by using proton beam from the CERN SPS. In this paper, the particle-in-cell (PIC) simulation of the SPS beam-driven plasma wakefield acceleration is introduced. By varying the beam parameters and plasma parameters, simulation shows that electric fields in excess of 1 GeV/m can be achieved.  
 
TUOBN5 A Proposed Experimental Test of Proton-Driven Plasma Wakefield Acceleration Based on CERN SPS 718
 
  • G.X. Xia, A. Caldwell
    MPI-P, München, Germany
  • W. An, C. Joshi, W. Lu, W.B. Mori
    UCLA, Los Angeles, California, USA
  • R.W. Assmann, F. Zimmermann
    CERN, Geneva, Switzerland
  • R.A. Fonseca, N.C. Lopes, J. Vieira
    Instituto Superior Tecnico, Lisbon, Portugal
  • C. Huang
    LANL, Los Alamos, New Mexico, USA
  • K.V. Lotov
    BINP SB RAS, Novosibirsk, Russia
  • P. Muggli
    USC, Los Angeles, California, USA
  • A.M. Pukhov
    HHUD, Dusseldorf, Germany
  • L.O. Silva
    IPFN, Lisbon, Portugal
 
  Proton-driven plasma wakefield acceleration (PDPWA) has been proposed as an approach to accelerate electron beam to TeV energy regime in a single passage of plasma channel. An experimental test is recently proposed to demonstrate the capability of PDPWA by using proton beams from the CERN SPS. The preparation of experiment is introduced. The particle-in-cell simulation results based on realistic beam parameters are presented.  
slides icon Slides TUOBN5 [2.208 MB]  
 
WEP103 Ion Instability Study for the ILC 3 km Damping Ring 1671
 
  • G.X. Xia
    MPI-P, München, Germany
 
  The ILC GDE is currently pushing the cost reduction for all subsystems of the ILC project for the Technique Design Phase 1. A short damping ring with circumference of 3.2 km was developed for this purpose. Based on this lattice, we performed a weak-strong simulation study of the ion instability in the electron damping ring for various beam parameters and vacuum pressures. The simulation results are given in this paper.