Author: Wang, P.
Paper Title Page
THP198 Upgrade of the RF Photo-Injector for the Duke Storage Ring 2489
 
  • V. Popov, J.Y. Li, S.F. Mikhailov, P.W. Wallace, P. Wang, Y.K. Wu
    FEL/Duke University, Durham, North Carolina, USA
 
  Funding: This work is supported in part by the US DOE grant no. DE-FG02-97ER41033.
The accelerator facility for the Duke FEL and High Intensity Gamma-ray Source (HIGS) consists of a linac pre-injector, a top-off booster injector, and the storage ring. The S-band RF gun with the LaB6 cathode was initially operated in the thermionic mode, producing a long electron beam pulse and a large radiation background. In 1997, the thermionic RF gun was converted to a photo-cathode operation using a nitrogen drive laser for single bunch injection into the storage ring. The photo-cathode operation typically delivers 0.1 nC of charge in a 1 ns long pulse to the linac. Since 2006, substantial improvements have been made to the photo-cathode and the linac, including improvements of the nitrogen drive laser, development of driver laser optical transport and beam monitoring system, and optimization of the cathode heater current to minimize the thermionic emission. In addition, two electron beam charge measurement systems using Faraday cup detectors and sample and hold electronics have been developed. In this work, we will present these new developments and discuss the impact of these upgrades on everyday operation of the linac pre-injector.