Author: Vostrikov, A.
Paper Title Page
MOP145 Physics Design of the Project X CW Linac 364
 
  • N. Solyak, J.-P. Carneiro, J.S. Kerby, V.A. Lebedev, S. Nagaitsev, J.-F. Ostiguy, A. Saini, A. Vostrikov, V.P. Yakovlev
    Fermilab, Batavia, USA
 
  The general design of the 3 GeV superconducting CW linac of the Project X is presented. Different physical and technical issues and limitations that determine the linac concept are discussed. The results of the RF system optimization are presented as well as the lattice design and beam dynamics analysis.  
 
TUP015 Conceptual Design of the Project-X 1.3 GHz, 3-8 GeV Pulsed Linac 841
 
  • N. Solyak, Y.I. Eidelman, S. Nagaitsev, J.-F. Ostiguy, A. Vostrikov, V.P. Yakovlev
    Fermilab, Batavia, USA
 
  The Project-X, a multi-MW proton source, is under development at Fermilab. It enables a Long Baseline Neutrino Experiment via a new beam line pointed to DUSEL in Lead, South Dakota, and a broad suite of rare decay experiments. The facility contains 3-GeV 1-mA CW superconducting linac. In the second stage of about 5% of the H beam is accelerated up to 8 GeV in a 1.3 GHz SRF pulse linac to Recycler/Main Injector. In order to mitigate the problem with the stripping foil heating during injection to the Main Injector, the pulses with higher current are accelerated in CW linac together with 1 mA beam for further acceleration in the pulse linac. The optimal current in the pulse linac is discussed as well as limitations that determine it's selection. A concept design of the pulse linac is described. The lattice design is presented as well as RF stability analysis. The necessity of the HOM couplers is discussed also.  
 
TUP088 Resonance Effects of Longitudinal HOMs in Project X Linac 991
 
  • V.P. Yakovlev, I.G. Gonin, T.N. Khabiboulline, A. Lunin, N. Solyak, A.I. Sukhanov, A. Vostrikov
    Fermilab, Batavia, USA
  • A. Saini
    University of Delhi, Delhi, India
 
  High-order mode influence on the beam longitudinal and transverse dynamics is considered for the 650 MHz section of the Project X linac. RF losses caused by HOMs are analyzed. Necessity of HOM dampers in the SC cavities of the linac is discussed.