Author: Tikhoplav, R.
Paper Title Page
MOP239 Commercially Available Transverse Profile Monitors, the IBIS 562
 
  • M. Ruelas, R.B. Agustsson, I. Bacchus, A.Y. Murokh, R. Tikhoplav
    RadiaBeam, Santa Monica, USA
 
  With ever decreasing budgets, shorter delivery schedules and increased performance requirements for pending and future facilities, the need for cost effective yet high quality profile monitors is paramount to future advancement in the accelerator field. While individual facilities are capable of designing and fabricating these often custom devices, this is not always the most efficient or economical route. In response to the lack of commercially available profile monitors, RadiaBeam Technologies has been developing its line of Integrated Beam Imaging System (IBIS) over the past several years. Here, we report on these commercially available profile monitors.  
 
MOP288 Progress Report on Development of the RING Cavity for Laser-based Charge Stripping of Hydrogen Ions 657
 
  • R. Tikhoplav
    RadiaBeam, Santa Monica, USA
  • I. Jovanovic
    Penn State University, University Park, Pennsylvania, USA
 
  Charge stripping of hydrogen ions is the first stage of any high intensity proton accelerator. To achieve higher-charge proton sources, the stripping efficiency must be improved, especially in the context of the Spallation Neutron Source at Oak Ridge National Laboratory. A method based on laser-ion interaction has a great potential for increasing efficiency. The approach of this proposed project is to design a laser cavity based on the Recirculation Injection by Nonlinear Gating (RING) technique. This paper reports on the progress of the development of the RING cavity.  
 
THP224 Progress Report on Development of Novel Ultrafast Mid-IR Laser System 2543
 
  • R. Tikhoplav, A.Y. Murokh
    RadiaBeam, Santa Monica, USA
  • I. Jovanovic
    Penn State University, University Park, Pennsylvania, USA
 
  Of particular interest to X-ray FEL light source facilities is Enhanced Self-Amplified Spontaneous Emission (ESASE) technique. Such a technique requires an ultrafast (20-50 fs) high peak power, high repetition rate reliable laser systems working in the mid-IR range of spectrum (2μm or more). The approach of this proposed work is to design a novel Ultrafast Mid-IR Laser System based on optical parametric chirped-pulse amplification (OPCPA). OPCPA is a technique ideally suited for production of ultrashort laser pulses at the center wavelength of 2 μm. Some of the key features of OPCPA are the wavelength agility, broad spectral bandwidth and negligible thermal load. This paper reports on the progress of the development of the Ultrafast Mid-IR Laser System.  
 
THP002 Re-Circulated Inverse Compton Scattering X-ray Source for Industrial Applications 2139
 
  • A.Y. Murokh, R.B. Agustsson, S. Boucher, P. Frigola, T. Hodgetts, A.G. Ovodenko, M. Ruelas, R. Tikhoplav
    RadiaBeam, Santa Monica, USA
  • M. Babzien, O.V. Chubar, T.V. Shaftan, V. Yakimenko
    BNL, Upton, Long Island, New York, USA
  • I. Jovanovic
    Penn State University, University Park, Pennsylvania, USA
 
  An experiment is under way at the Accelerator Test Facility (ATF) at BNL to demonstrate inverse Compton scattering in a pulse-train regime. A photoinjector generated electron beam pulse train is scattered by a recirculating laser pulse in a novel resonant configuration termed Recirculation Injection by Nonlinear Gating (RING). The goal of the experiment is to demonstrate strong enhancement of the ICS photon flux through laser recirculation. The project status is presented, and the long-term outlook is discussed with emphasis on the medical and security applications.