Author: Terzic, B.     [Terzić, B.]
Paper Title Page
WEP167 Searching for the Optimal Working Point of the MEIC at JLab Using an Evolutionary Algorithm 1805
 
  • B. Terzić
    JLAB, Newport News, Virginia, USA
  • C. Jarvis
    Macalester, St. Paul, Minnesota, USA
  • M. Kramer
    UCB, Berkeley, California, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. Supported in part by SciDAC collaboration.
The Medium-energy Electron Ion Collider (MEIC), a proposed medium-energy ring-ring electron-ion collider based on CEBAF at Jefferson Lab. The collider luminosity and stability are sensitive to the choice of a working point – the betatron and synchrotron tunes of the two colliding beams. Therefore, a careful selection of the working point is essential for stable operation of the collider, as well as for achieving high luminosity. Here we describe a novel approach for locating an optimal working point based on evolutionary algorithm techniques.
 
 
THP093 Design Status of MEIC at JLab 2306
 
  • Y. Zhang, S. Ahmed, S.A. Bogacz, P. Chevtsov, Y.S. Derbenev, A. Hutton, G.A. Krafft, R. Li, F. Marhauser, V.S. Morozov, F.C. Pilat, R.A. Rimmer, Y. Roblin, T. Satogata, M. Spata, B. Terzić, M.G. Tiefenback, H. Wang, B.C. Yunn
    JLAB, Newport News, Virginia, USA
  • S. Abeyratne, B. Erdelyi
    Northern Illinois University, DeKalb, Illinois, USA
  • D.P. Barber
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • A.M. Kondratenko
    GOO Zaryad, Novosibirsk, Russia
  • S.L. Manikonda, P.N. Ostroumov
    ANL, Argonne, USA
  • H. K. Sayed
    ODU, Norfolk, Virginia, USA
  • M.K. Sullivan
    SLAC, Menlo Park, California, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
An electron-ion collider (MEIC) is envisioned as the primary future of the JLab nuclear science program beyond the 12 GeV upgraded CEBAF. The present MEIC design selects a ring-ring collider option and covers a CM energy range up to 51 GeV for both polarized light ions and un-polarized heavy ions, while higher CM energies could be reached by a future upgrade. The MEIC stored colliding ion beams, which will be generated, accumulated and accelerated in a green field ion complex, are designed to match the stored electron beam injected at full energy from the CEBAF in terms of emittance, bunch length, charge and repetition frequency. This design strategy ensures a high luminosity above 1034 s−1cm-2. A unique figure-8 shape collider ring is adopted for advantages of preserving ion polarization during acceleration and accommodation of a polarized deuteron beam for collisions. Our recent effort has been focused on completing this conceptual design as well as design optimization of major components. Significant progress has also been made in accelerator R&D including chromatic correction and dynamical aperture, beam-beam, high energy electron cooling and polarization tracking.