Author: Talty, P.
Paper Title Page
TUP220 Cryogenic Sub-System for the 56 MHz SRF Storage Cavity for RHIC 1226
 
  • Y. Huang, D.L. Lederle, L. Masi, P. Orfin, T.N. Tallerico, P. Talty, R. Than, Y. Zhang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
A 56 MHz Superconducting RF Cavity is being constructed for the RHIC collider. This cavity is a quarter wave resonator that will be operated at 4.4K. The cavity requires an extreme quiet environment to maintain its operating frequency. The cavity besides being engineered for a mechanically quiet system, also requires a quiet cryogenic system. Liquid helium is taken from RHIC's main helium 3.5 atm, 4.9K supply header to supply this sub-system and the boil-off is return to a separate local compressor system nearby. To acoustically separate the cryogenics' delivery and return lines, a condenser/boiler heat exchanger is used to re-liquefy the helium vapor generated by the cavity. A system description and operating parameters is given about the cryogen delivery sub-system.
 
 
TUP223 Cryogenic System for the Energy Recovery Linac and Vertical Test Facility at BNL 1235
 
  • R. Than, D.L. Lederle, L. Masi, P. Orfin, R. Porqueddu, V. Soria, T.N. Tallerico, P. Talty, Y. Zhang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
A small cryogenic system and warm helium vacuum pumping system provides cooling to the Energy Recovery Linac's (ERL) cryomodules, a 5-cell cavity and an SRF gun, and a large Vertical Test Dewar. The system consist of a model 1660S PSI (KPS) plant, a 4000 liter storage dewar, subcooler, wet expander, 50 g/s main helium compressor and 170 m3 storage tank. A system description and operating plan is given of the cryogenic plant and cryomodules