Author: Tableman, A.
Paper Title Page
MOP081 Proton Acceleration by Trapping in a Relativistic Laser Driven Uphill Plasma Snowplow 247
 
  • A. Sahai, T.C. Katsouleas
    Duke ECE, Durham, North Carolina, USA
  • W.B. Mori, A. Tableman, J. Tonge, F.S. Tsung
    UCLA, Los Angeles, California, USA
 
  We explore a novel regime of proton and ion acceleration off of overdense Plasma created by a Laser pulse. In Coulomb explosion, Target Normal Sheath, Acoustic shock acceleration regimes the protons are neither high-energy nor monoenergetic enough for applications such as hadron radiation therapy, fast ignition fusion research and particle physics. This calls out for exploration of effective regimes of acceleration. The proposed Snowplow regime of acceleration uses a Snowplow of charge created by a relativistic Laser pulse at the critical density on a uphill Plasma density gradient. The relativistically moving Snowplow's space charge drags the protons and its velocity can be controlled to effectively trap the protons using laser pulse shape and the uphill density profile. We describe the principles behind this mechanism. We derive analytical expressions for the Snowplow velocity and its dependence on the parameter space. We primarily explore the density gradient and laser pulse shape to optimally accelerate protons from rest to the desired velocities. Preliminary, 1-D simulation results are presented and analyzed.