Author: Stuart, M.E.
Paper Title Page
WEP222 Low Energy Beam Diagnostic for APEX, the LBNL VHF Photo-injector 1903
 
  • D. Filippetto, J.M. Byrd, M.J. Chin, C.W. Cork, S. De Santis, L.R. Doolittle, J. Feng, W.E. Norum, C. F. Papadopoulos, G.J. Portmann, D.G. Quintas, F. Sannibale, M.E. Stuart, R.P. Wells, M.S. Zolotorev
    LBNL, Berkeley, California, USA
 
  Funding: This work was supported by the Director of the Office of Science of the US Department of Energy under Contract no. DEAC02-05CH11231
A high-repetition rate (MHz-class), high-brightness electron beam photo-gun is under construction at Lawrence Berkeley National Laboratory in the framework of the Advanced Photo-injector EXperiment (APEX). The injector gun is based on a normal conducting 187 MHz RF cavity operating in CW mode. In its first operational phase it will deliver short bunches (~ 1 to tens of picoseconds) with energy of 750keV, and bunch charges ranging from 1pC to 1nC. Different high efficiency cathode materials will be tested, and the beam quality will be studied as a function of parameters as charge, initial bunch length and transverse size, focusing strength. Both the laser and electron beam diagnostics have been designed to assure the needed flexibility. In particular a high-resolution electron diagnostic section after the photo-gun provides the necessary dynamical range for scanned beam parameters: energy and energy spread, charge and current, transverse and longitudinal phase spaces, slice properties. The photo-gun electron beam diagnostic layout is presented, and the hardware choices, resolution and achievable dynamical ranges are also discussed.