Author: Sereno, N.
Paper Title Page
WEP280 Development of an Ultra-Low-Emittance RF PhotoInjector for a Future X-Ray FEL Oscillator 2005
 
  • X.W. Dong, K.-J. Kim, N. Sereno, C.-X. Wang, A. Zholents
    ANL, Argonne, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DEAC02-06CH11357.
The proposed x-ray free-electron laser oscillator* requires continuous electron bunches with ultra-low normalized transverse emittance of less than 0.1 micrometer, a bunch charge of 40 pC, an rms uncorrelated energy spread of less than 1.4 MeV, produced at a rate between 1 MHz to 10 MHz. The bunches are to be compressed to an rms length of ~1 ps and accelerated to the final energy of 7 GeV. In this paper, we discuss a design for an ultra-low-emittance injector based on a 325-MHz room-temperature rf cavity and a Cs2Te photocathode. The results of initial optimizations of the beam dynamics with a focus on extracting and preserving ultra-low emittance will be presented.
* K.-J. Kim et al., Phys. Rev. Lett. 100, 244802 (2008).