Author: Santana, M.
Paper Title Page
WEP273 Saddle RF Antenna H Ion Source Progress 1987
 
  • V.G. Dudnikov, R.P. Johnson
    Muons, Inc, Batavia, USA
  • S. Murray, T.R. Pennisi, M. Santana, M.P. Stockli, R.F. Welton
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: Supported in part by USDOE Contract DE-AC05-00OR22725 and STTR Grant DE-SC0002690
In this project we are developing an RF H surface plasma source (SPS) with saddle (SA) RF antenna which will provide better power efficiency for high pulsed and average current, higher brightness with longer lifetime and higher reliability. Several versions of new plasma generators with a small AlN test chamber and different antennasandmagneticfieldconfigurationsweretestedin the SNS ion source Test Stand. A prototype SA SPS was installed in the Test Stand with a larger, normal-sized SNS AlN chamber that achieved unanalyzed peak currents of up to 67 mA with an apparent efficiency of 1.6 mA/kW. Control experiments with H beam produced by SNS SPS with internal and external antennas were conducted. A new version of the RF triggering plasma source (TPS) has been designed. A Saddle antenna SPS with water cooling is being fabricated for high duty factor testing.
 
 
WEP275 Highly-Persistent SNS H Source Fueling 1-MW Beams with 7-9 kC Service Cycles 1993
 
  • M.P. Stockli, T.W. Hardek, Y.W. Kang, S.N. Murray, T.R. Pennisi, M.F. Piller, M. Santana, R.F. Welton
    ORNL, Oak Ridge, Tennessee, USA
  • B. Han
    ORNL RAD, Oak Ridge, Tennessee, USA
 
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy.
Running routinely with ~40-mA, 1-MW beams, the SNS linac is fed from the ion source with ~1ms long, ~50-mA H beam pulses at 60 Hz. This requires the daily extraction of ~230 C of H ions, which exceeds the routine daily production of other H accelerator sources by almost an order of magnitude. The source service cycle has been extended from 2, to 3, to 4, and up to 5.6 weeks without age-related failures. The 7-9 kC of H ions delivered in single service cycles exceed the service cycle yields of other accelerator sources. The paper discusses the findings as well as the issues and their mitigations, which enabled the simultaneous increase of the beam current, the duty factor, the availability, and the service cycle.