Author: Sandoval, Jr., G. M.
Paper Title Page
TUP134 New High Power Test Facility for VHF Power Amplifiers at LANSCE 1088
 
  • J.T.M. Lyles, S. Archuletta, J. Davis, L. Lopez, D. Rees, M.R. Rodriguez, G. M. Sandoval, Jr., A. Steck, D.J. Vigil
    LANL, Los Alamos, New Mexico, USA
  • D. Baca, R.E. Bratton, R.D. Summers
    Compa Industries, Inc., Los Alamos, New Mexico, USA
  • N.W. Brennan
    Texas A&M University, College Station, Texas, USA
 
  Funding: Work supported by the United States Department of Energy, National Nuclear Security Agency, under contract DE-AC52-06NA25396
A new test facility was designed and constructed at Los Alamos Neutron Science Center (LANSCE) for testing the Thales TH628 Diacrode® and TH781 tetrode power amplifiers. Anode power requirements for the TH628 are 28 kV DC, with peak currents of 190 Amperes in long pulses. A new 225 uF capacitor bank supplies this demand. A charging power supply was obtained by re-configuring a 2 MW beam power supply remaining from another project. A traditional ignitron crowbar was designed to rapidly discharge the 88 kJ stored energy. The anode power supply was extensively tested using a pulsed tetrode switch and resistor load. A new Fast Protect and Monitor System (FPMS) was designed to take samples of RF reflected power, anode HV, and various tube currents, with outputs to quench the HV charging supply, remove RF drive and disable the conduction bias pulse to the grid of each tube during fault events. The entire test stand is controlled with a programmable logic controller, for normal startup sequencing and timing, protection against loss of cooling, and operator GUI.
 
 
TUP135 RF Design and Operating Results for a New 201.25 MHz RF Power Amplifier for LANSCE 1091
 
  • J.T.M. Lyles, N.K. Bultman, Z. Chen, J. Davis, A.C. Naranjo, D. Rees, G. M. Sandoval, Jr.
    LANL, Los Alamos, New Mexico, USA
  • D. Baca, R.E. Bratton, R.D. Summers
    Compa Industries, Inc., Los Alamos, New Mexico, USA
  • N.W. Brennan
    Texas A&M University, College Station, Texas, USA
 
  Funding: Work supported by the United States Department of Energy, National Nuclear Security Agency, under contract DE-AC52-06NA25396
A prototype VHF RF Final Power Amplifier (FPA) for Los Alamos Neutron Science Center (LANSCE) has been designed, fabricated, and tested. The cavity amplifier met the design goals producing 3.2 MW peak and 480 kW of average power, at an elevation of 2.1 km. It was designed to use a Thales TH628 Diacrode®, a state-of-art tetrode power tube that is double-ended, providing roughly twice the power of a conventional tetrode. The amplifier is designed with tunable input and output transmission line cavity circuits, a grid decoupling circuit, an adjustable output coupler, TE mode suppressors, blocking, bypassing and decoupling capacitors, and a cooling system. The tube is connected in a full wavelength output circuit, with the lower main tuner situated ¾λ from the central electron beam region in the tube and the upper slave tuner ¼λ from the same point. We summarize the design processes and features of the FPA along with significant test results. A pair of production amplifiers are planned to be power-combined and installed at the LANSCE DTL to return operation to full beam duty factor.