Author: Roy, P.K.
Paper Title Page
WEP270 A High Current Density Li+ Alumino-silicate Ion Source for Target Heating Experiments 1981
 
  • P.K. Roy, W.G. Greenway, J.W. Kwan, P.A. Seidl, W.L. Waldron
    LBNL, Berkeley, California, USA
 
  Funding: This work was performed under the auspices of the U.S Department of Energy by LLNL under contract DE AC52 07NA27344, and by LBNL under contract DE-AC02-05CH11231.
The NDCX-II accelerator has been designed for target heating experiments in the warm dense matter regime. It will use a large diameter (≈ 10.9 cm) Li+ doped alumino-silicate source with a pulse duration of 0.5 μs, and beam current of ≈ 93 mA. Characterization of a prototype lithium alumino-silicate sources is presented. Using 6.35 mm diameter prototype emitters (coated and sintered on a ≈ 75% porous tungsten substrate), at a temperature of ≈1275° C, a space-charge limited Li+ beam current density of ≈ 1 mA/cm2 was measured. At higher extraction voltage, the source is emission limited at around ≈ 1.5 mA/cm2, weakly dependent on the applied voltage. The lifetime of the ion source is ≈ 50 hours while pulsing the extraction voltage at 2 to 3 times per minute. Measurements under these conditions show that the lifetime of the ion source does not depend only on beam current extraction, and lithium loss may be dominated by neutral loss or by evaporation. The thickness of the coating does not affect the emission density. It is inferred that pulsed heating, synchronized with the beam pulse rate may increase the life time of a source.
 
 
WEOAS1 Inertial Fusion Driven by Intense Heavy-Ion Beams 1386
 
  • W. M. Sharp, J.J. Barnard, R.H. Cohen, M. Dorf, A. Friedman, D.P. Grote, S.M. Lund, L.J. Perkins, M.R. Terry
    LLNL, Livermore, California, USA
  • F.M. Bieniosek, A. Faltens, E. Henestroza, J.-Y. Jung, A.E. Koniges, J.W. Kwan, E. P. Lee, S.M. Lidia, B.G. Logan, P.N. Ni, L.R. Reginato, P.K. Roy, P.A. Seidl, J.H. Takakuwa, J.-L. Vay, W.L. Waldron
    LBNL, Berkeley, California, USA
  • R.C. Davidson, E.P. Gilson, I. Kaganovich, H. Qin, E. Startsev
    PPPL, Princeton, New Jersey, USA
  • I. Haber, R.A. Kishek
    UMD, College Park, Maryland, USA
 
  Funding: Work performed under the auspices of the US Department of Energy by LLNL under Contract DE-AC52-07NA27344, by LBNL under Contract DE-AC02-05CH11231, and by PPPL under Contract DE-AC02-76CH03073.
Intense heavy-ion beams have long been considered a promising driver option for inertial-fusion energy production. This paper briefly compares inertial confinement fusion (ICF) to the more-familiar magnetic- confinement approach and presents some advantages of using beams of heavy ions to drive ICF instead of lasers. Key design choices in heavy-ion fusion (HIF) facilities are discussed, particularly the type of accelerator. We then review experiments carried out at Lawrence Berkeley National Laboratory (LBNL) over the past thirty years to understand various aspects of HIF driver physics. A brief review follows of present HIF research in the US and abroad, focusing on a new facility, NDCX-II, being built at LBNL to study the physics of warm dense matter heated by ions, as well as aspects of HIF target physics. Future research directions are briefly summarized.
 
slides icon Slides WEOAS1 [18.657 MB]