Author: Reiser, M.
Paper Title Page
MOODS1 Space-Charge Effects in Bunched and Debunched Beams 85
 
  • B.L. Beaudoin, S. Bernal, K. Fiuza, I. Haber, R.A. Kishek, T.W. Koeth, P.G. O'Shea, M. Reiser, D.F. Sutter
    UMD, College Park, Maryland, USA
 
  Funding: This work is funded by the US Dept. of Energy Offices of High Energy Physics and High Energy Density Physics, and by the US Dept. of Defense Office of Naval Research and Joint Technology Office
The University of Maryland Electron Ring (UMER) is a machine designed to study high-intensity beam physics. With the application of axial fields to the bunch ends, we are able to keep a beam with an injected tune shift of 1.0, bunched over multiple turns. This is feasible with the application of tailored fields to optimally match the space-charge self-fields while minimizing the excitation of longitudinal space-charge waves. With this scheme, we have been able to extend the number of turns at the University of Maryland Electron Ring (UMER) by a factor of ten. Without the use of longitudinal focusing, head and tail effects begin to dominate, especially with the higher current beams. Time resolved measurements of the peak correlated energy spread have shown in some cases a change in the overall spread of 1.8% for the 0.6 mA beam, from the injected beam energy.
 
slides icon Slides MOODS1 [2.834 MB]