Author: Ranjibar, V.H.
Paper Title Page
MOP137 Predictive Design and Interpretation of Colliding Pulse Injected Laser Wakefield Experiments 349
 
  • E. Cormier-Michel, D.L. Bruhwiler, B.M. Cowan, V.H. Ranjibar
    Tech-X, Boulder, Colorado, USA
  • M. Chen, E. Esarey, C.G.R. Geddes, W. Leemans, C.B. Schroeder
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by DOE, NA-22, and Office of Science, HEP via the SciDAC-2 project ComPASS, grant No DE-FC02-07ER41499. Resources of NERSC were used (DOE contract No DE-AC02-05CH11231).
The use of colliding laser pulses to control the injection of plasma electrons into the plasma wake of a laser-plasma accelerator is a promising approach to obtain reproducible and tunable electron bunches with low energy spread and emittance. We present recent particle-in-cell simulations of colliding pulse injection for parameters relevant to ongoing experiments at LBNL. We perform parameter scans in order to determine the best conditions for the production of high quality electron bunches, and compare the results with experimental data. We also evaluate the effect of laser focusing in the plasma channel and of higher order laser mode components on the bunch properties.