Author: Prestemon, S.
Paper Title Page
TUP173 Progress on the Modeling and Modification of the MICE Superconducting Spectrometer Solenoids 1151
 
  • S.P. Virostek, M.A. Green, T.O. Niinikoski, S. Prestemon, M.S. Zisman
    LBNL, Berkeley, California, USA
 
  Funding: This work was supported by the Office of Science, U.S. Department of Energy under DOE contract number DE-AC02-05CH11231.
The Muon Ionization Cooling Experiment (MICE) is an international effort sited at Rutherford Appleton Laboratory (RAL) in the UK that will demonstrate ionization cooling in a section of realistic cooling channel using a muon beam. The spectrometer solenoids are an identical pair of five-coil superconducting magnets that will provide a 4-tesla uniform field region at each end of the cooling channel. Scintillating fiber trackers within each of the 400-mm diameter magnet bore tubes will measure the emittance of the beam as it enters and exits the cooling channel. Each of the 3-meter long magnets incorporates a three-coil spectrometer magnet section and a two-coil section that matches the solenoid uniform field into the MICE cooling channel. The cold mass, radiation shield and leads are kept cold by means of a series of two-stage cryocoolers and one single-stage cryocooler. Various thermal, electrical and magnetic analyses are being carried out in order to develop design improvements related to magnet cooling and reliability. The key features of the spectrometer solenoid magnets are presented along with some of the details of the analyses.
 
 
TUOCS3 Status of the ALS Upgrade 769
 
  • C. Steier, B.J. Bailey, A. Biocca, A.T. Black, D. Colomb, N. Li, A. Madur, S. Marks, H. Nishimura, G.C. Pappas, G.J. Portmann, S. Prestemon, D. Robin, S.L. Rossi, F. Sannibale, T. Scarvie, D. Schlueter, C. Sun, W. Wan
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11231
The Advanced Light Source (ALS) at Berkeley Lab is one of the earliest 3rd generation light sources. Over the years substantial upgrades have been implemented to keep the facility at the forefront of soft x-ray sources. The most recent one is a multi-year upgrade, that includes new and replacement x-ray beamlines, a replacement of many of the original insertion devices and many upgrades to the accelerator. The accelerator upgrade that affects the ALS performance most directly is the ALS brightness upgrade, which will reduce the horizontal emittance from 6.3 to 2.2 nm. This will result in a brightness increase by a factor of three for bend magnet beamlines and at least a factor of two for insertion device beamlines and will keep the ALS competitive with newer sources.
 
slides icon Slides TUOCS3 [4.970 MB]  
 
TUOCS5 A Next Generation Light Source Facility at LBNL 775
 
  • J.N. Corlett, B. Austin, K.M. Baptiste, J.M. Byrd, P. Denes, R.J. Donahue, L.R. Doolittle, R.W. Falcone, D. Filippetto, D.S. Fournier, J. Kirz, D. Li, H.A. Padmore, C. F. Papadopoulos, G.C. Pappas, G. Penn, M. Placidi, S. Prestemon, D. Prosnitz, J. Qiang, A. Ratti, M.W. Reinsch, F. Sannibale, D. Schlueter, R.W. Schoenlein, J.W. Staples, T. Vecchione, M. Venturini, R.P. Wells, R.B. Wilcox, J.S. Wurtele
    LBNL, Berkeley, California, USA
  • A.E. Charman, E. Kur
    UCB, Berkeley, California, USA
  • A. Zholents
    ANL, Argonne, USA
 
  Funding: Work supported by the Director, Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231
The Next Generation Light Source (NGLS) is a design concept, under development at LBNL, for a multi‐beamline soft x‐ray FEL array powered by a 2 GeV superconducting linear accelerator, operating with a 1 MHz bunch repetition rate. The CW superconducting linear accelerator is supplied by a high-brightness, high-repetition-rate photocathode electron gun. Electron bunches are distributed from the linac to the array of independently configurable FEL beamlines with nominal bunch rates up to 100 kHz in each FEL, and with even pulse spacing. Individual FELs may be configured for EEHG, HGHG, SASE, or oscillator mode of operation, and will produce high peak and average brightness x-rays with a flexible pulse format, and with pulse durations ranging from sub-femtoseconds to hundreds of femtoseconds.
 
slides icon Slides TUOCS5 [4.758 MB]