Author: Prantil, M.A.
Paper Title Page
THP222 Drive Laser System for the Advanced Photo-Injector Project at the LBNL 2537
 
  • J. Feng, D. Filippetto, H.A. Padmore, F. Sannibale, R.P. Wells
    LBNL, Berkeley, California, USA
  • M. J. Messerly, M.A. Prantil
    LLNL, Livermore, California, USA
 
  Funding: This work was supported by the Director of the Office of Science of the US Department of Energy under Contract no. DEAC02-05CH11231.
The electron photo-gun of the Advanced Photo-injector EXperiment project (APEX) at the LBNL will be driven by a compact fiber laser for different photo-cathode experiments during the initial phase of the project. The fiber laser, developed at the Lawrence Livermore National Laboratory, is designed to deliver μJ/pulse at 1064 nm system that is frequency doubled to deliver light at 532nm with 1MHz repetition rate and 1ps pulse length optimized for photo-emission with multi-alkali antimonide cathodes. For Cs2Te and diamond amplifier cathodes, the 4th harmonic will be generated by doubling frequency again in a non-linear crystal. Due to the requirement of small emittance for the electron beam, the laser pulse will be shaped in space and time for 532nm and UV lights, in general with a constant intensity in cross section with a sharp radial cutoff, and elliptical or rectangular distribution in the longitudinal plane. Diagnostics of the laser beam itself and of the cathode will be integrated with techniques such as cross- correlation, streak camera, and virtual cathode imaging, not only to monitor the laser pulse but also to provide automated feedbacks.