Author: Plateau, G.R.D.
Paper Title Page
MOP123 Colliding Pulse Injection Control in a Laser-Plasma Accelerator 325
 
  • C.G.R. Geddes, M. Chen, E. Esarey, W. Leemans, N.H. Matlis, D.E. Mittelberger, K. Nakamura, G.R.D. Plateau, C.B. Schroeder, C. Tóth
    LBNL, Berkeley, California, USA
  • D.L. Bruhwiler, J.R. Cary, E. Cormier-Michel, B.M. Cowan
    Tech-X, Boulder, Colorado, USA
 
  Funding: This work is supported by the U.S. Department of Energy, National Nuclear Security Administration, NA-22, and in part by the Office of Science under Contract No. DE-AC02-05CH11231.
Control of injection into a high gradient laser-plasma accelerator is presented using the beat between two ’colliding’ laser pulses to kick electrons into the plasma wake accelerating phase. Stable intersection and performance over hours of operation were obtained using active pointing control. Dependence of injector performance on laser and plasma parameters were characterized in coordination with simulations. By scanning the intersection point of the lasers, the injection position was controlled, mapping the acceleration length. Laser modifications to extend acceleration length are discussed towards production of tunable stable electron bunches as needed for applications including Thomson gamma sources and high energy colliders.
 
 
MOP229 Electron Bunch Characterization using Temporal Electric-field Cross-correlation 534
 
  • N.H. Matlis, W. Leemans, G.R.D. Plateau, J. van Tilborg
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by DARPA and by the Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231
A new single-shot diagnostic is presented for mapping THz spatiotemporal waveforms with high temporal resolu- tion for use in diagnostics of electron bunch temporal pro- files. The THz waveform is encoded using electro-optic sampling onto either the phase or amplitude of a broadband chirped probe pulse, and is recovered using linear spectral interferometry with a temporally-short reader pulse. The technique was used to measure waveforms of coherent, ultrashort THz pulses emitted by electron bunches from a laser-plasma accelerator with sub-50 fs resolution. The presence of strong spatiotemporal coupling in the THz waveforms and of complex temporal electron bunch structure was determined.