Author: Plate, S.R.
Paper Title Page
TUP163 Design Construction and Test Results of a HTS Solenoid for Energy Recovery Linac 1127
 
  • R.C. Gupta, M. Anerella, I. Ben-Zvi, G. Ganetis, D. Kayran, G.T. McIntyre, J.F. Muratore, S.R. Plate, W. Sampson
    BNL, Upton, Long Island, New York, USA
  • M.D. Cole, D. Holmes
    AES, Medford, NY, USA
 
  Funding: This work is supported by the U.S. Department of Energy under Contract No. DE-AC02-98CH10886.
An innovative feature of the proposed Energy Recovery Linac (ERL) at Brookhaven National Laboratory (BNL) is the use of a solenoid made with High Temperature Superconductor (HTS) with the Superconducting RF cavity. The use of HTS in the solenoid offers many advantages. The solenoid is located in the transition region (4 K to room temperature) where the temperature is too high for a conventional low temperature superconductor and the heat load on the cryogenic system too high for copper coils. Proximity to the cavity provides early focusing and thus a reduction in the emittance of the electron beam. In addition, taking full advantage of the high critical temperature of HTS, the solenoid has been designed to reach the required field at ~77 K, which can be obtained with liquid nitrogen. This significantly reduces the cost of testing and allows a variety of critical pre‐tests (e.g. measurements of the axial and fringe fields) which would have been very expensive at 4 K in liquid helium because of the additional requirements for a cryostat and associated facilities. This paper will present the design, construction, test results and current status of this HTS solenoid.
 
 
TUP165 Design, Construction and Test of Cryogen-Free HTS Coil Structure 1133
 
  • H.M. Hocker, M. Anerella, R.C. Gupta, S.R. Plate, W. Sampson, J. Schmalzle, Y. Shiroyanagi
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by the U.S. Dept. of Energy under Contract No. DE-AC02-98CH10886 & under Coop. Agreement DE-SC0000661 from DOE-SC that provides financial assistance to MSU to design and establish FRIB
This paper will describe design, construction and test results of a cryo-mechanical structure to study coils made with the second generation High Temperature Superconductor (HTS) for the Facility for Rare Isotope Beams (FRIB). A magnet comprised of HTS coils mounted in a vacuum vessel and conduction-cooled with Gifford-McMahon cycle cryocoolers is used to develop and refine design and construction techniques. The study of these techniques and their effect on operations provides a better understanding of the use of cryogen free magnets in future accelerator projects. A cryogen-free, superconducting HTS magnet possesses certain operational advantages over cryogenically cooled, low temperature superconducting magnets.
 
 
WEOCS3
HTS Magnets for Accelerator and Other Applications  
 
  • R.C. Gupta, M. Anerella, G. Ganetis, P.N. Joshi, H.G. Kirk, R. B. Palmer, S.R. Plate, W. Sampson, Y. Shiroyanagi, P. Wanderer
    BNL, Upton, Long Island, New York, USA
  • D.B. Cline
    UCLA, Los Angeles, California, USA
  • J. Kolonko, R.M. Scanlan, R.J. Weggel
    Particle Beam Lasers, Inc., Northridge, California, USA
 
  Funding: This work is supported by the U.S. Department of Energy under Contract No. DE-AC02-98CH10886.
High Temperature Superconductors (HTS) are now becoming a crucial part of future medium and high field magnet applications in several areas including accelerators, energy storage, medical and user facilities. A second generation HTS quadrupole is being constructed for the Facilities for Rare Isotope Beams (FRIB). The muon collider requires high field solenoids in the range of 40-50 T - an R&D that is partly supported by SBIRs and partly programs at various laboratories. Superconducting Magnetic Energy Storage (SMES) R&D, recently funded by ARPA-E, requires large aperture HTS solenoid in the range of 25-30 T. A user facility at National High Magnetic Field Laboratory (NHMFL) has been funded to develop a 32 T solenoid. All of these programs require HTS in a quantity never obtained before for magnet applications and would play a key role in developing HTS for magnet applications. High field magnets pose special challenges in terms of quench protection, large stored energy and large stresses, etc. This presentation will review various ongoing activities, and examine the future prospects of HTS magnets in a number of applications, with a particular emphasis on high field applications.
 
slides icon Slides WEOCS3 [2.761 MB]  
 
TUP164 Magnetic Design of e-lens Solenoid and Corrector System for RHIC 1130
 
  • R.C. Gupta, M. Anerella, W. Fischer, G. Ganetis, A.K. Ghosh, X. Gu, A.K. Jain, P. Kovach, A. Marone, A.I. Pikin, S.R. Plate, P. Wanderer
    BNL, Upton, Long Island, New York, USA
 
  Funding: This work is supported by the U.S. Department of Energy under Contract No. DE-AC02-98CH10886.
As a part of the proposed electron lens system for RHIC, two 6 T, 200 mm aperture, 2.5 meter long superconducting solenoids are being designed and built at BNL. Because of several demanding requirements this has become a unique and technologically advanced magnet. For example, the field lines on axis must be straight over the length of the solenoid within ±50 microns. Since this is beyond the normal construction techniques, a correction package becomes an integral part of the design for which a new design has been developed. In addition, a minimum of 0.3 T field is required along the electron beam trajectory in the space between magnets. To achieve this fringe field superconducting solenoidal coils have been added at the two ends of the main solenoid. The main solenoid itself is a challenging magnet because of the high Lorentz forces and stored energy associated with the large aperture and high fields. An innovative structure has been developed to deal with the large axial forces at the ends. This paper will summarize the magnetic design and optimization of the entire package consisting of the main solenoid, the fringe field solenoids, and the corrector system.