Paper | Title | Page |
---|---|---|
THP065 | Advances in High-Order Interaction Region Nonlinear Optics Correction at RHIC | 2252 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. A method to indirectly measure and deterministically correct the higher order magnetic errors of the final focusing magnets in the Relativistic Heavy Ion Collider has been in place for several years at BNL. This method yields control over the effects of multi-pole errors through application of closed orbit bumps followed by analysis and correction of the resulting betatron tune shifts using multi-pole correctors. The process has recently been automated in order to provide more efficient and effective corrections. The tune resolution along with the reliability of tune measurements has also been improved significantly due to advances/upgrades in the betatron tune measurement system employed at RHIC (BBQ). Here we describe the foundation of the IR bump method, followed by recent improvements along with experimental data. |
||
THP054 | Medium Energy Heavy Ion Operations at RHIC | 2220 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. As part of the search for a phase transition or critical point on the QCD phase diagram, an energy scan including 5 different energy settings was performed during the 2010 RHIC heavy ion run. While the top beam energy for heavy ions is at 100 GeV/n and the lowest achieved energy setpoint was significantly below RHICs injection energy of approximately 10 GeV/n, we also provided beams for data taking in a medium energy range above injection energy and below top beam energy. This paper reviews RHIC experience and challenges for RHIC medium energy operations that produced full experimental data sets at beam energies of 31.2 GeV/n and 19.5 GeV/n. |
||
THP093 | Design Status of MEIC at JLab | 2306 |
|
||
Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. An electron-ion collider (MEIC) is envisioned as the primary future of the JLab nuclear science program beyond the 12 GeV upgraded CEBAF. The present MEIC design selects a ring-ring collider option and covers a CM energy range up to 51 GeV for both polarized light ions and un-polarized heavy ions, while higher CM energies could be reached by a future upgrade. The MEIC stored colliding ion beams, which will be generated, accumulated and accelerated in a green field ion complex, are designed to match the stored electron beam injected at full energy from the CEBAF in terms of emittance, bunch length, charge and repetition frequency. This design strategy ensures a high luminosity above 1034 s−1cm-2. A unique figure-8 shape collider ring is adopted for advantages of preserving ion polarization during acceleration and accommodation of a polarized deuteron beam for collisions. Our recent effort has been focused on completing this conceptual design as well as design optimization of major components. Significant progress has also been made in accelerator R&D including chromatic correction and dynamical aperture, beam-beam, high energy electron cooling and polarization tracking. |
||