Author: Phillips, D.
Paper Title Page
TUP056 BNL 703 MHz Superconducting RF Cavity Testing 913
 
  • B. Sheehy, Z. Altinbas, I. Ben-Zvi, D.M. Gassner, H. Hahn, L.R. Hammons, J.P. Jamilkowski, D. Kayran, J. Kewisch, N. Laloudakis, D.L. Lederle, V. Litvinenko, G.T. McIntyre, D. Pate, D. Phillips, C. Schultheiss, T. Seda, R. Than, W. Xu, A. Zaltsman
    BNL, Upton, Long Island, New York, USA
  • A. Burrill
    JLAB, Newport News, Virginia, USA
  • T. Schultheiss
    AES, Medford, NY, USA
 
  Funding: This work received support from Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The Brookhaven National Laboratory (BNL) 5-cell, 703 MHz superconducting RF accelerating cavity has been installed in the high-current energy recovery linac (ERL) experiment. This experiment will function as a proving ground for the development of high-current machines in general and is particularly targeted at beam development for an electron-ion collider (eRHIC). The cavity performed well in vertical tests, demonstrating gradients of 20 MV/m and a Q0 of 1010. Here we will present its performance in the horizontal tests, and discuss technical issues involved in its implementation in the ERL.
 
 
TUP061 FPC Conditioning Cart at BNL 928
 
  • W. Xu, Z. Altinbas, S.A. Belomestnykh, I. Ben-Zvi, A. Burrill, S. Deonarine, D.M. Gassner, J.P. Jamilkowski, P. Kankiya, D. Kayran, N. Laloudakis, L. Masi, G.T. McIntyre, D. Pate, D. Phillips, T. Seda, A.N. Steszyn, T.N. Tallerico, R.J. Todd, D. Weiss, A. Zaltsman
    BNL, Upton, Long Island, New York, USA
  • M.D. Cole, G.J. Whitbeck
    AES, Medford, NY, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The 703MHz superconducting gun will have 2 fundamental power couplers (FPCs). Each FPC will deliver up to 500kW of RF power. In order to prepare the couplers for high power RF service and process multipacting, the FPCs should be conditioned before they are installed in the gun. A conditioning cart based test stand, which includes a vacuum pumping system, controllable bake-out system, diagnostics, interlocks and data log system has been designed, constructed and commissioned by collaboration of BNL and AES. This paper presents FPC conditioning cart systems and summarizes the conditioning process and results.
 
 
WEP261 Performance of the New EBIS Preinjector 1966
 
  • J.G. Alessi, E.N. Beebe, S. Binello, C.J. Gardner, O. Gould, L.T. Hoff, N.A. Kling, R.F. Lambiase, V. LoDestro, R. Lockey, M. Mapes, A. McNerney, J. Morris, M. Okamura, A. Pendzick, D. Phillips, A.I. Pikin, D. Raparia, J. Ritter, T.C. Shrey, L. Smart, L. Snydstrup, C. Theisen, M. Wilinski, A. Zaltsman, K. Zeno
    BNL, Upton, Long Island, New York, USA
  • U. Ratzinger, A. Schempp
    IAP, Frankfurt am Main, Germany
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy, and by the National Aeronautics and Space Administration.
The construction and initial commissioning phase of a new heavy ion preinjector was completed at Brookhaven in September, 2010, and the preinjector is now operational. This preinjector, using an EBIS source to produce high charge state heavy ions, provided helium and neon ion beams for use at the NASA Space Radiation Laboratory in the Fall of 2010, and gold and uranium beams are being commissioned during the 2011 run cycle for use in RHIC. The EBIS operates with an electron beam current of up to 10 A, to produce mA level currents in 10 to 40 μs beam pulses. The source is followed by an RFQ and IH linac to accelerate ions with q/m > 0.16 to an energy of 2 MeV/amu, for injection into the Booster synchrotron. The performance of the preinjector is presented, including initial operational experience for the NASA and RHIC programs.
 
 
THP006 Status of High Current R&D Energy Recovery Linac at Brookhaven National Laboratory 2148
 
  • D. Kayran, Z. Altinbas, D.R. Beavis, I. Ben-Zvi, R. Calaga, D.M. Gassner, H. Hahn, L.R. Hammons, A.K. Jain, J.P. Jamilkowski, N. Laloudakis, R.F. Lambiase, D.L. Lederle, V. Litvinenko, G.J. Mahler, G.T. McIntyre, W. Meng, B. Oerter, D. Pate, D. Phillips, J. Reich, T. Roser, C. Schultheiss, B. Sheehy, T. Srinivasan-Rao, R. Than, J.E. Tuozzolo, D. Weiss, W. Xu, A. Zaltsman
    BNL, Upton, Long Island, New York, USA
 
  An ampere-class 20 MeV superconducting energy recovery linac (ERL) is under construction at Brookhaven National Laboratory (BNL) for testing of concepts relevant for high-energy coherent electron cooling and electron-ion colliders. One of the goals is to demonstrate an electron beam with high charge per bunch (~5 nC) and low normalized emittance (~5 mm-mrad) at an energy of 20 MeV. A flexible lattice for the ERL loop provides a test bed for investigating issues of transverse and longitudinal instabilities and diagnostics for CW beam. A superconducting 703 MHz RF photo-injector is considered as an electron source for such a facility. We will start with a straight pass (gun/cavity/beam stop) test for gun performance studies. Later, we will install and test a novel injection line concept for emittance preservation in a lower-energy merger. Here we present the status and our plans for construction and commissioning of this facility.