Author: Patil, A.J.
Paper Title Page
THP009 Collimator Design of 15 MeV Linear Accelerator Based Thermal Neutron Source for Radiography 2154
 
  • B.J. Patil, V.N. Bhoraskar, S.D. Dhole
    University of Pune, Pune, India
  • S.T. Chavan, R. Krishnan, S.N. Pethe
    SAMEER, Mumbai, India
  • A.J. Patil
    DANA, Pune, India
 
  Neutron Radiography is a powerful non-destructive testing technique used for the analysis of objects which are widely used in security, medical, nuclear and industrial applications. Optimization of the thermal neutron radiography facility has been carried out using 15 MeV LINAC based neutron source. In this case, a neutron collimator has been designed along with g-n target, moderator, reflector and shielding. The g-n target has been optimized based on their photonuclear threshold. The moderating properties have been studied for few light elements to optimize best suitable moderator for radiography system. The major part of the design was to optimize the collimator for neutron beam which decides quality of the image given. To get best values of collimator parameters such as collimation ratio, gamma content, neuron flux, cadmium ratio, beam uniformity, etc. a FLUKA simulation was carried out. The collimator has been optimized with cadmium lining square cone to capture the scattered thermal neutrons and the collimation ratio to L/D=18. The neutron flux of the optimized facility obtained at the object plane is 1.0·10+5 n/(cm2-sec1) and neutron to gamma ratio is 1.0·10+5 n/(cm2-mR1).