Author: Pardo, R.C.
Paper Title Page
THOCN5 ATLAS Upgrade 2110
 
  • P.N. Ostroumov, A. Barcikowski, Z.A. Conway, S.M. Gerbick, M. Kedzie, M.P. Kelly, S.W.T. MacDonald, B. Mustapha, R.C. Pardo, S.I. Sharamentov
    ANL, Argonne, USA
 
  Funding: This work was supported by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357.
ATLAS (Argonne Tandem Linac Accelerator System) upgrade requires several substantial developments in accelerator technologies, such as CW heavy ion RFQ and high-performance cryomodule with low-beta cavities. The upgrade project is well advanced. The physics and engineering design of the RFQ are complete and fabrication of OFE copper parts is in progress. The 3.9-meter length RFQ is composed from 5 strongly coupled segments. High-temperature furnace brazing of the segments is planned for the summer of 2011. The RFQ design includes several innovative features such as trapezoidal vane tip modulation, compact output radial matcher to form an axially symmetric beam. The upgrade project also includes development and construction of a cryomodule containing seven 72.75 MHz SC quarter wave cavities designed for the geometrical β= 0.077 and four SC solenoids. The cavity is designed to obtain an accelerating voltage higher than 2.5 MV. The prototype cavity together with high-power capacitive coupler and piezoelectric tuner has been developed, fabricated and is being tested. This paper reports innovative design features of both RFQ and SRF linac and current status of the project.
 
slides icon Slides THOCN5 [3.070 MB]