Author: Ozelis, J.P.
Paper Title Page
TUP033 Engineering Design of Vertical Test Stand Cryostat 874
 
  • S.K. Suhane, S. Das, P.D. Gupta, S.C. Joshi, P.K. Kush, S. Raghvendra, N.K. Sharma
    RRCAT, Indore (M.P.), India
  • R.H. Carcagno, C.M. Ginsburg, C.S. Mishra, J.P. Ozelis, R. Rabehl, C. Sylvester
    Fermilab, Batavia, USA
  • V.C. Sahni
    Homi Bhbha National Institute (HBNI), DAE, Mumbai, India
 
  Under Indian Institutions and Fermilab collaboration Raja Ramanna Centre for Advanced Technology and Fermi Lab are jointly developing 2K Vertical Test Stand (VTS) cryostats for testing SCRF cavities. The VTS cryostat has been designed for a large testing aperture of 34 inches for testing of 325 MHz Spoke resonators, 650 MHz and 1.3 GHz multi-cell SCRF cavities for Project-X at FNAL and for VTS facility at RRCAT. VTS cryostat comprises of liquid helium (LHe) vessel with internal magnetic shield, top insert plate equipped with cavity support stand and radiation shield, liquid nitrogen (LN2) shield and vacuum vessel with external magnetic shield. . The engineering design and analysis of VTS cryostat has been carried out using ASME B&PV code and FEA. Design of internal and external magnetic shields was performed to limit the magnetic field inside LHe vessel, at the cavity surface <10 mG. Thermal analysis for LN2 shield has been performed to check the effectiveness of LN2 cooling.  
 
TUP085 Assumptions for the RF Losses in the 650 MHz Cavities of the Project X Linac 985
 
  • A. Romanenko, L.D. Cooley, J.P. Ozelis, N. Solyak, V.P. Yakovlev
    Fermilab, Batavia, USA
 
  The requirements for the FNAL Project X cryogenic system depend on the dynamic heat loads of 650 MHz cavities. The heat load is in turn determined by quality factors of the cavities at the operating gradient. In this contribution we use the available experimental data to analyze quality factors achievable in 650 MHz linac cavities taking into account different RF losses contributions such as BCS resistance, residual resistance and a medium field Q-slope.  
 
TUP032 Development of 1.3 GHz Prototype Niobium Single Cell Superconducting Cavity Under IIFC Collaboration 871
 
  • A. Puntambekar, M. Bagre, J. Dwivedi, P.D. Gupta, R.K. Gupta, S.C. Joshi, G.V. Kane, R.S. Sandha, S.D. Sharma, P. Shrivastava
    RRCAT, Indore (M.P.), India
  • C.A. Cooper, M.H. Foley, T.N. Khabiboulline, C.S. Mishra, J.P. Ozelis, A.M. Rowe, G. Wu
    Fermilab, Batavia, USA
  • V. Jain
    IIT, Mumbai, India
  • D. Kanjilal, K.K. Mistri, P.N. Potukuchi, J. Sacharias
    IUAC, New Delhi, India
  • V.C. Sahni
    Homi Bhbha National Institute (HBNI), DAE, Mumbai, India
 
  Under Indian Institutions Fermilab collaboration (IIFC), Raja Ramanna Centre for Advanced Technology (RRCAT) Indore, Inter University Accelerator Centre (IUAC) New Delhi and Fermi National Accelerator Laboratory (FNAL) have developed two prototype 1.3 GHz niobium single cell superconducting cavities. Development of forming tools, forming of half cells, machining of components, development of welding fixtures along with RF & vacuum qualification were carried out at RRCAT. The electron beam welding was carried out at IUAC. The fabricated prototype cavities were tested for RF and vacuum leak tightness up to 77 K at RRCAT before shipment to FNAL. Processing, consisting of CBP, EP, and heat treatment was carried out jointly by FNAL and Argonne National Laboratory in USA. Both the prototype cavities were tested at 2 K in the VTS facility at FNAL and have achieved the accelerating gradient of ~ 19 to 21 MV/m with Q > 1.5 ·10+10. This paper will report the developmental efforts carried out in tooling, forming, machining, welding & various qualification procedures adopted. The paper will also present the processing and the 2 K test results.  
 
FROBS5 1.3 GHz Superconducting RF Cavity Program at Fermilab 2586
 
  • C.M. Ginsburg, T.T. Arkan, S. Barbanotti, H. Carter, M.S. Champion, L.D. Cooley, C.A. Cooper, M.H. Foley, M. Ge, C.J. Grimm, E.R. Harms, A. Hocker, R.D. Kephart, T.N. Khabiboulline, J.R. Leibfritz, A. Lunin, J.P. Ozelis, Y.M. Pischalnikov, A.M. Rowe, W. Schappert, D.A. Sergatskov, A.I. Sukhanov, G. Wu
    Fermilab, Batavia, USA
 
  Funding: Work supported by Fermi Research Alliance, LLC under contract DE-AC02-07CH11359 with the U.S. Department of Energy.
At Fermilab, 9-cell 1.3 GHz superconducting RF (SRF) cavities are prepared, qualified, and assembled into cryomodules, for Project X, an International Linear Collider, or other future projects. The 1.3 GHz SRF cavity program includes targeted R&D on 1-cell 1.3 GHz cavities for cavity performance improvement. Production cavity qualification includes cavity inspection, surface processing, clean assembly, and one or more cryogenic low-power CW qualification tests which typically include performance diagnostics. Qualified cavities are welded into helium vessels and are cryogenically tested with pulsed high-power. Well performing cavities are assembled into cryomodules for pulsed high-power testing in a cryomodule test facility, and possible installation into a beamline. The overall goals of the 1.3 GHz SRF cavity program, supporting facilities, and accomplishments are described.
 
slides icon Slides FROBS5 [3.749 MB]