Author: Ostiguy, J.-F.
Paper Title Page
MOP145 Physics Design of the Project X CW Linac 364
 
  • N. Solyak, J.-P. Carneiro, J.S. Kerby, V.A. Lebedev, S. Nagaitsev, J.-F. Ostiguy, A. Saini, A. Vostrikov, V.P. Yakovlev
    Fermilab, Batavia, USA
 
  The general design of the 3 GeV superconducting CW linac of the Project X is presented. Different physical and technical issues and limitations that determine the linac concept are discussed. The results of the RF system optimization are presented as well as the lattice design and beam dynamics analysis.  
 
TUP015 Conceptual Design of the Project-X 1.3 GHz, 3-8 GeV Pulsed Linac 841
 
  • N. Solyak, Y.I. Eidelman, S. Nagaitsev, J.-F. Ostiguy, A. Vostrikov, V.P. Yakovlev
    Fermilab, Batavia, USA
 
  The Project-X, a multi-MW proton source, is under development at Fermilab. It enables a Long Baseline Neutrino Experiment via a new beam line pointed to DUSEL in Lead, South Dakota, and a broad suite of rare decay experiments. The facility contains 3-GeV 1-mA CW superconducting linac. In the second stage of about 5% of the H beam is accelerated up to 8 GeV in a 1.3 GHz SRF pulse linac to Recycler/Main Injector. In order to mitigate the problem with the stripping foil heating during injection to the Main Injector, the pulses with higher current are accelerated in CW linac together with 1 mA beam for further acceleration in the pulse linac. The optimal current in the pulse linac is discussed as well as limitations that determine it's selection. A concept design of the pulse linac is described. The lattice design is presented as well as RF stability analysis. The necessity of the HOM couplers is discussed also.  
 
WEP095 Analysis of the Beam Loss Mechanism in the Project-X Linac 1651
 
  • N. Solyak, J.-P. Carneiro, V.A. Lebedev, S. Nagaitsev, J.-F. Ostiguy
    Fermilab, Batavia, USA
 
  Minimization of the beam losses in a multi-MW H-minus linac of the Project X to the level below 1W/m is a challenging task. Analysis of different mechanisms of beam stripping, including stripping in electric and magnetic fields, residual gas, black-body radiation and intra-beam stripping, is analyzed. Other sources of beam losses are misalignment of beamline elements and errors in RF fields and phase. We presented the requirements for dynamics errors and correction schemes to keep beam losses under control