Author: Osterhoff, J.
Paper Title Page
MOP084 A High Repetition Plasma Mirror for Staged Electron Acceleration 256
 
  • T. Sokollik, E.S. Evans, A.J. Gonsalves, W. Leemans, C. Lin, K. Nakamura, J. Osterhoff, S. Shiraishi, C. Tóth, J. van Tilborg
    LBNL, Berkeley, California, USA
 
  Funding: Acknowledgment: This work is supported by the National Science Foundation and DTRA.
In order to build a compact, staged laser plasma accelerator the in-coupling of the laser beam to the different stages represents one of the key issues. To limit the spatial foot print and thus to realize a high overall acceleration gradient, a concept has to be found which realizes this in-coupling within a few centimeters. We present experiments on a tape-drive based plasma mirror which could be used to reflect the focused laser beam into the acceleration stage.
References:
* W. Leemans et. al, Phys. Today, 62, 44 (2009)
** G. Doumy et. al, Phys. Rev. E 69, 026402 (2004)
*** B. Dromey et. al,, Rev. Sci. Instrum. 75, 645 (2004)
 
 
MOP124 Accurate Alignment of Plasma Channels Based on Laser Centroid Oscillations 328
 
  • A.J. Gonsalves, C.G.R. Geddes, C. Lin, K. Nakamura, J. Osterhoff, C.B. Schroeder, S. Shiraishi, T. Sokollik, C. Tóth
    LBNL, Berkeley, California, USA
  • E. Esarey
    University of Nevada, Reno, Reno, Nevada, USA
  • W. Leemans
    UCB, Berkeley, California, USA
 
  Funding: Work supported by the Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
A technique has been developed to accurately align a laser beam through a plasma channel by minimizing the shift in laser centroid and angle at the channel outptut. If only the shift in centroid or angle is measured, then accurate alignment is provided by minimizing laser centroid motion at the channel exit as the channel properties are scanned. The improvement in alignment accuracy pro- vided by this technique is important for minimizing electron beam pointing errors in laser plasma accelerators.
 
 
MOP161 Undulator-based Laser Wakefield Accelerator Electron Beam Diagnostic 397
 
  • M.S. Bakeman, E. Esarey, W. Leemans, K. Nakamura, J. Osterhoff, K.E. Robinson, C.B. Schroeder, C. Tóth, J. van Tilborg
    LBNL, Berkeley, California, USA
  • F.J. Grüner, R. Weingartner
    LMU, Garching, Germany
 
  Funding: This work is supported by DTRA and DOE-HEP.
The design and current status of experiments to cou- ple the Tapered Hybrid Undulator (THUNDER) to the Lawrence Berkeley National Laboratory (LBNL) laser plasma accelerator (LPA) to measure electron beam energy spread and emittance are presented.
* W.P. Leemans et al., Nature Physics, Volume 2, Issue 10, pp. 696-699 (2006).
** C.B. Schroeder et al., Proceedings AAC08 Conference (2008).
*** F. Grüner et al., Appl. Phys. B, 86(3):431–435 (2007).
 
 
MOP230 Precise Charge Measurement for Laser Plasma Accelerators 537
 
  • K. Nakamura, W.E. Byrne, R.J. Donahue, A.J. Gonsalves, C. Lin, J. Osterhoff, D.E. Rodgers, A.R. Smith, T. Sokollik, J. van Tilborg
    LBNL, Berkeley, California, USA
  • W. Leemans
    UCB, Berkeley, California, USA
  • S. Shiraishi
    Enrico Fermi Institute, University of Chicago, Chicago, Illinois, USA
 
  Funding: Work supported by the Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
Cross-calibrations of charge diagnostics are conducted to verify their validity for measuring electron beams produced by laser plasma accelerators (LPAs). Employed diagnostics are a scintillating screen, activation based mea- surement, and integrating current transformer. The diagnostics agreed within ±8 %, showing that they can provide accurate charge measurements for LPAs provided they are used properly.