Author: Najmudin, Z.
Paper Title Page
MOP154 Prospects for Proton Accelerators Driven by the Radiation Pressure from a Sub-PW CO2 Laser 379
 
  • M.N. Polyanskiy, I. Ben-Zvi, I. Pogorelsky, V. Yakimenko
    BNL, Upton, Long Island, New York, USA
  • Z. Najmudin
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
 
  Funding: DOE
Laser acceleration of ion beams is normally realized via irradiating thin-foil targets with near-IR solid-state lasers with up to petawatt (PW) peak power. Despite demonstration of significant achievements, further progress towards practical application of such beam sources is hindered by the challenges inherent in constructing still more intense and higher-contrast lasers. Our recent studies of the radiation pressure acceleration indicate that the combination of a 10-μm CO2 laser with a gas jet target offers a unique opportunity for a breakthrough in the field. Strong power scaling of this regime holds the promise of achieving the hundreds of MeV proton beams with just sub-PW CO2 laser pulses. Generation of such pulses is a challenging task. We discuss a strategy of the CO2 laser upgrade aimed to providing a more compact and economical hadron source for cancer therapy. This include optimization of the method of the 10μm short-pulse generation, higher amplification in the CO2 gas under combined isotopic and power broadening effects, and the pulse shortening to a few laser cycles (150-200 fs) via self-chirping in the laser-produced plasma and the consecutive dispersive compression.