Paper | Title | Page |
---|---|---|
MOP107 | Status of Dielectric-Lined Two-Channel Rectangular High Transformer Ratio Accelerator Structure Experiment | 298 |
|
||
Funding: This work is supported by DoE, Office of High Energy Physics Recent tests of a two-channel rectangular dielectric lined accelerator structure are described; comparison with theory and related issues are presented. The structure (with channel width ratio 6:1) is designed to have a maximum transformer ratio of ~12.5:1. It operates mainly in the LSM31 mode (~ 30GHz). The dielectric liner is cordierite (dielectric constant ~4.76). The acceleration gradient is 1.2 MV/m for each 10nC of the drive bunch for the first acceleration peak of the wakefield, and 0.92 MV/m for the second peak. The structure is installed into the AWA beam-line (Argonne National Lab) and is excited by a single 10-50nC, 14MeV drive bunch. Both the drive bunch and a delayed witness bunch are produced at the same photocathode. This is the first experiment to test a two-channel dielectric rectangular wakefield device where the accelerated bunch may be continuously energized by the drive bunch. The immediate experimental objective is to observe the energy gain and spread, and thereby draw conclusions from the experimental results and the theory model predictions. The observed energy change of the test bunch might be well explained*. * G. V. Sotnikov, et al., Advanced Accelerator Concepts: 13th Workshop, Carl B. Schroeder, Wim Leemans and Eric Esarey, editors, AIP Conf. Proc. 1086), pp. 415–420 (AIP, New York, 2009). |
||
MOP132 | Wakefield Generation in Compact Rectangular Dielectric-Loaded Structures Using Flat Beams | 340 |
|
||
Funding: This work was supported by the Defense Threat Reduction Agency, Basic Research Award # HDTRA1-10-1-0051, to Northern Illinois University Wakefields with amplitude in the 10's MV/m range can be routinely generated by passing electron beams through dielectric-loaded structures. The main obstacle in obtaining high field amplitude (in the GV/m range) is the ability to focus the high-peak-current electron beam in the transverse plane to micron level, and to maintain the focusing all the way along the dielectric structure. In this paper we explore the use of a flat, high-peak current, electron beams to be produced at the Fermilab's NML facility to drive dielectric loaded structures. Based on beam dynamics simulation we anticipate that we can obtain flat beams with very small vertical size (under 100 microns) and peak current is in excess of 1 kA. We present simulations of the wakefield generation based on theoretical models and PIC simulations with VORPAL. |
||
WEP100 | Energy Spread Compensation for Multi-Bunch Linac Operation Mode | 1662 |
|
||
Funding: This work was supported under the U.S. Department of Energy contract number: DE-AC02-06CH11357 with Argonne National Laboratory. Higher wakefield gradients can be achieved by increasing the total beam charge which is passed through a dielectric-loaded structure and by reducing the transverse size of the beam. Currently, the Argonne AWA photoinjector operates with electron bunches of up to 100 nC and the goal is to raise the total beam charge to about 1000 nC and to improve the beam focusing to a few 100's microns transverse spot size. The increase of the beam charge can be done by superimposing electron bunches that fill up several consecutive RF buckets. Although the energy stored in a single 7-cell linac is by design large the multi-bunch operation with short bunch trains (~10 ns) is still plagued by large energy spread due to significant beam loading effects. In this paper we present a technique intended to reduce the energy spread for a high charge bunch train by properly choosing the time delay between consecutive bunches. The simulations show that the energy spread can be lowered to about 2.8% from about 6.0% for a 10-bunch train of total charge 1000 nC and kinetic energy of about 70 MeV. |
||
WEP196 | Single-Shot Longitudinal Phase Space Measurement Diagnostics Beamline Status at the Argonne Wakefield Accelerator | 1858 |
|
||
A single-shot longitudinal phase space diagnostics experiment is currently being commissioned at Argonne Wakefield Accelerator. The diagnostic beamline consists of two magnetic dipoles that bend the beam horizontally followed by an rf deflecting cavity that streaks the beam vertically. Using this configuration, the incoming longitudinal phase space can be mapped to a final (x,y) plane which can be directly measured, e.g., using a YAG screen. In this paper we discuss the limitations of such longitudinal phase space diagnostics and present some preliminary measurements. | ||