Author: Meinecke, J.
Paper Title Page
WEOBS3 The Effects of a Density Mismatch in a Two-State LWFA 1421
 
  • B.B. Pollock, F. Albert, C. Filip, D.H. Froula, S.H. Glenzer, J.E. Ralph
    LLNL, Livermore, California, USA
  • C.E. Clayton, C. Joshi, K.A. Marsh, J. Meinecke, A.E. Pak, J.L. Shaw
    UCLA, Los Angeles, California, USA
  • K.L. Herpoldt
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
  • G.R. Tynan
    UCSD, La Jolla, California, USA
 
  Funding: Work performed under U.S. DOE Contract DE-AC52-07NA27344 and was partially funded by the Laboratory Directed Research and Development Program under project tracking code 06-ERD-056.
A two-stage Laser Wakefield Accelerator (LWFA) has been developed, which utilizes the ionization induced injection mechanism to produce high energy, narrow energy spread electron beams when the electron density is equal in both stages. However, when the densities are not equal these high quality beams are not observed. As the electron density varies across the interface between the adjacent stages the size of the ion cavity is expected to change; this results in either a reduction of the peak electron energy (for a density decrease), or in the exclusion of previously trapped charge from the first wake period (for a density increase). The latter case can be overcome if the interaction length before the density interface exceeds a threshold determined by the densities in each stage, and may provide a mechanism for enhanced energy gain.