Author: McDonald, K.T.
Paper Title Page
TUP179 Energy Deposition within Superconducting Coils of a 4 MW Target Station 1166
 
  • X.P. Ding
    UCLA, Los Angeles, California, USA
  • J.J. Back
    University of Warwick, Coventry, United Kingdom
  • R.C. Fernow, H.G. Kirk, N. Souchlas
    BNL, Upton, Long Island, New York, USA
  • K.T. McDonald
    PU, Princeton, New Jersey, USA
  • R.J. Weggel
    Particle Beam Lasers, Inc., Northridge, California, USA
 
  Funding: Work Supported by the United States Department of Energy, Contract No. DE-AC02-98CH10886.
A study of energy deposition within superconducting coils of a 4 MW target station for a neutrino factory or muon collider is presented. Using the MARS code, we simulate the energy deposition within the environment surrounding the target. The radiation is produced by interactions of intense proton beams with a free liquid mercury jet. We study the influence of different shielding materials and shielding configurations on the energy deposition in the superconducting coils of the target/capture system. We also examine energy depositions for alternative configurations that allow more space for shielding, thus providing more protection for the superconducting coils.
 
 
TUP265 A Solenoid Capture System for a Muon Collider 1316
 
  • H.G. Kirk, R.C. Fernow, N. Souchlas
    BNL, Upton, Long Island, New York, USA
  • J.J. Back
    University of Warwick, Coventry, United Kingdom
  • C.J. Densham, P. Loveridge
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
  • X.P. Ding
    UCLA, Los Angeles, California, USA
  • V.B. Graves
    ORNL, Oak Ridge, Tennessee, USA
  • T. Guo, F. Ladeinde, V. Samulyak, Y. Zhan
    SUNY SB, Stony Brook, New York, USA
  • K.T. McDonald
    PU, Princeton, New Jersey, USA
  • R.J. Weggel
    Particle Beam Lasers, Inc., Northridge, California, USA
 
  Funding: This work was supported in part by the US DOE Contract No. DE-AC02-98CH10886.
The concept for a muon-production system for a muon collider or neutrino factory calls for an intense 4-MW-class proton beam impinging upon a free-flowing mercury jet immersed in a 20-T solenoid field. This system is challenging in many aspects, including magnetohydrodynamics of the mercury jet subject to disruption by the proton beam, strong intermagnetic forces, and the intense thermal loads and substantial radiation damage to the magnet coils due to secondary particles from the target. Studies of these issues are ongoing, with a sketch of their present status given here.