Author: Liu, X.
Paper Title Page
TUP229 Implementation and Operation of Electron Cloud Diagnostics for CesrTA 1250
 
  • Y. Li, J.V. Conway, X. Liu, V. Medjidzade, M.A. Palmer
    CLASSE, Ithaca, New York, USA
 
  Funding: Work Supported by NSF Grant #PHY-0734867 & DOE Grant #DE-FC02-08ER41538
The vacuum system of Cornell Electron Storage Ring (CESR) was successfully reconfigured to support CesrTA physics programs, including electron cloud (EC) build-up and suppression studies. One of key features of the reconfigured CESR vacuum system is the flexibility for exchange of various vacuum chambers with minimized impact to the accelerator operations. This is achieved by creation of three short gate-valve isolated vacuum sections. Over the last three years, many vacuum chambers with various EC diagnostics (such as RFAs, shielded pickups, etc) were rotated through these short experimental sections. With these instrumented test chambers, EC build-up was studied in many magnetic field types, including dipoles, quadrupoles, wigglers and field-free drifts. EC suppression techniques by coating (TiN, NEG and amorphous-C), surface textures (grooves) and clearing electrode are incorporated in these test chambers to evaluate their vacuum performance and EC suppression effectiveness. We present the implementation and operations of EC diagnostics.
 
 
WEP142 Electron Cloud Modeling Results for Time-resolved Shielded Pickup Measurements at CesrTA 1752
 
  • J.A. Crittenden, Y. Li, X. Liu, M.A. Palmer, J.P. Sikora
    CLASSE, Ithaca, New York, USA
  • S. Calatroni, G. Rumolo
    CERN, Geneva, Switzerland
 
  Funding: Support by DOE contract DE-FC02-08ER41538 and NSF contract PHY-0734867
The Cornell Electron Storage Ring Test Accelerator (CesrTA) program includes investigations into electron cloud buildup, applying various mitigation techniques in custom vacuum chambers. Among these are two 1.1 meter long sections located symmetrically in the east and west arc regions. These chambers are equipped with pickup detectors shielded against the direct beam-induced signal. Here we report on results from the ECLOUD modeling code which highlight the sensitivity of these measurements to model parameters such as the photoelectron energy distributions, and the secondary elastic yield value.
 
 
WEP244 Growth and Characterization of Bialkali Photocathodes for Cornell ERL Injector 1942
 
  • L. Cultrera, I.V. Bazarov, J.V. Conway, B.M. Dunham, Y. Li, X. Liu, K.W. Smolenski
    CLASSE, Ithaca, New York, USA
  • S.S. Karkare, J.M. Maxson
    Cornell University, Ithaca, New York, USA
 
  The requirements of high quantum efficiency in the visible spectral range and that of an increased lifetime as compared to cesiated GaAs can be met by multi-alkali photocathodes, either CsKSb or NaKSb. In this paper we detail the procedures that allow the growth of thin films suitable for the ERL photoinjector operating at Cornell University. Quantum efficiency, spectral response, and surface characterization of deposited samples is presented. A load-locked multi-alkali cathode growth system is also described.  
 
THP192 Effect of Surface Roughness on the Emittance from GaAs Photocathode 2480
 
  • S.S. Karkare, I.V. Bazarov
    Cornell University, Ithaca, New York, USA
  • L. Cultrera, A. Iyer, X. Liu, W.J. Schaff
    CLASSE, Ithaca, New York, USA
 
  Funding: This work is supported by NSF under Grant No. DMR- 0807731 and DOE under Grant No. DE-SC0003965.
The surface roughness of GaAs photocathodes used in the injector prototype for the ERL at Cornell University was measured and compared to that of the atomically polished GaAs crystal surface using the atomic force microscopy (AFM) technique. The results show at least an order of magnitude rise in the GaAs surface roughness after subjecting it to heat cleaning, prior to activation. An analytical model for photoemission that takes into account the effect of surface roughness has been developed. This model predicts emittance values close to the experimental observations, explains the experimentally observed variation of emittance with incident light wavelength and reconciles the discrepancies in experimental data.
 
 
TUOBS2 Cornell ERL Research and Development 729
 
  • C.E. Mayes, I.V. Bazarov, S.A. Belomestnykh, D.H. Bilderback, M.G. Billing, J.D. Brock, E.P. Chojnacki, J.A. Crittenden, L. Cultrera, J. Dobbins, B.M. Dunham, R.D. Ehrlich, M. P. Ehrlichman, E. Fontes, C.M. Gulliford, D.L. Hartill, G.H. Hoffstaetter, V.O. Kostroun, F.A. Laham, Y. Li, M. Liepe, X. Liu, F. Löhl, A. Meseck, A.A. Mikhailichenko, H. Padamsee, S. Posen, P. Quigley, P. Revesz, D.H. Rice, D. Sagan, V.D. Shemelin, E.N. Smith, K.W. Smolenski, A.B. Temnykh, M. Tigner, N.R.A. Valles, V. Veshcherevich, Y. Xie
    CLASSE, Ithaca, New York, USA
  • S.S. Karkare, J.M. Maxson
    Cornell University, Ithaca, New York, USA
 
  Funding: Supported by NSF award DMR-0807731.
Energy Recovery Linacs (ERLs) are proposed as drivers for hard X-ray sources because of their ability to produce electron bunches with small, flexible cross sections and short lengths at high repetition rates. The advantages of ERL lightsources will be explained, and the status of plans for such facilities will be described. In particular, Cornell University plans to build an ERL light source, and the preparatory research for its construction will be discussed. This will include the prototype injector for high current CW ultra-low emittance beams, superconducting CW technology, the transport of low emittance beams, halo formation from intrabeam scattering, the mitigation of ion effects, the suppression of instabilities, and front to end simulations. Several of these topics could become important for other modern light source projects, such as SASE FELs, HGHG FELs, and XFELOs.
 
slides icon Slides TUOBS2 [5.632 MB]