Author: Lee, S.-Y.
Paper Title Page
TUOCS7 Design of an Ultimate Storage Ring for Future Light Source 781
 
  • Y.C. Jing, S.-Y. Lee
    IUCEEM, Bloomington, Indiana, USA
  • P.E. Sokol
    IUCF, Bloomington, Indiana, USA
 
  Ultimate storage ring (USR) with natural emittance comparable to diffractive limit is becoming a compatible candidate for next generation hard X-ray light source. When FEL technique is employed, it can deliver a high quality beam with very high brightness compared to 3rd generation light sources and transverse coherence which facilitates the power growth. In this paper, we propose a design of a 5GeV USR with emittance at 10pm for both planes. A lattice of nBA type is used and combined function magnet is employed to make a compact storage ring.  
slides icon Slides TUOCS7 [1.746 MB]  
 
WEP149 Beam Measurement by a Wall Gap Monitor in ALPHA 1761
 
  • T.H. Luo, P.D. McChesney, P.E. Sokol
    IUCF, Bloomington, Indiana, USA
  • S.-Y. Lee
    IUCEEM, Bloomington, Indiana, USA
 
  In this report, we present our electron beam measurements with a wall gap monitor (WGM) in ALPHA injection and extraction beam lines. The WGM is first bench mark tested, and then installed in the ALPHA injection line to measure both the macro andμpulse of the injected beam and calibrate the beam current. By scanning the bending magnet before the WGM, and applying a demodulation signal processing scheme, we measured the tomography of the longitudinal phase space of the injected beam. We moved the WGM to extraction beam line and measured the properties of the extracted beam. By comparing the frequency spectrum of injected and extracted beam, we have confirmed the debunching performance of ALPHA.  
 
TUP236 Progress of a Gradient Damping Wiggler of the ALPHA Storage Ring 1265
 
  • C.W. Huang, D.J. Huang
    NTHU, Hsinchu, Taiwan
  • S.D. Chen
    NCTU, Hsinchu, Taiwan
  • M.-H. Huang, C.-S. Hwang, C.Y. Kuo, F.-Y. Lin, Y.T. Yu
    NSRRC, Hsinchu, Taiwan
  • S.-Y. Lee
    IUCF, Bloomington, Indiana, USA
 
  The main purpose of a gradient damping wiggler (GDW) to be installed in the Alpha storage ring in Indiana University is to correct the momentum-compaction factor and the damping partition in the Alpha storage ring. One middle pole and two outer poles in one set of the GDW are installed on the same girder. Two sets of GDW will be installed in the two short straight sections. The dipole and gradient-field strengths of the middle (outer) pole are 0.67 T (-0.67 T) and 1.273 T m-1 (1.273 T m-1), respectively. One completed set of GDW is already fabricated; we shall add an end shim to improve the region of effective good field within which the middle and outer poles along the transverse x-axis (△B/B = 0.1 %) are ±50 and ±40 mm respectively. We used a trim coil on the three poles to adjust the first and second integral fields to zero. Here we discuss the integral magnetic field features along the straight trajectory and the ideal orbital trajectory with a Hall probe mapping system, and present an analysis of the magnetic field.