Author: Lebedev, V.A.
Paper Title Page
MOP145 Physics Design of the Project X CW Linac 364
 
  • N. Solyak, J.-P. Carneiro, J.S. Kerby, V.A. Lebedev, S. Nagaitsev, J.-F. Ostiguy, A. Saini, A. Vostrikov, V.P. Yakovlev
    Fermilab, Batavia, USA
 
  The general design of the 3 GeV superconducting CW linac of the Project X is presented. Different physical and technical issues and limitations that determine the linac concept are discussed. The results of the RF system optimization are presented as well as the lattice design and beam dynamics analysis.  
 
TUP014 Broad-band Beam Chopper for a CW Proton Linac at Fermilab 838
 
  • N. Solyak, E. Gianfelice-Wendt, V.A. Lebedev, S. Nagaitsev, D. Sun
    Fermilab, Batavia, USA
 
  The specifications and the initial conceptual ides for a broad-band proton chopper for a Fermilab Project X linac will be presented. The chopper will form bunch patterns required by physics experiments and will work with downstream beam splitter, allowing for a variable bunch pattern to be delivered to up to three experiment concurrently.  
 
WEP095 Analysis of the Beam Loss Mechanism in the Project-X Linac 1651
 
  • N. Solyak, J.-P. Carneiro, V.A. Lebedev, S. Nagaitsev, J.-F. Ostiguy
    Fermilab, Batavia, USA
 
  Minimization of the beam losses in a multi-MW H-minus linac of the Project X to the level below 1W/m is a challenging task. Analysis of different mechanisms of beam stripping, including stripping in electric and magnetic fields, residual gas, black-body radiation and intra-beam stripping, is analyzed. Other sources of beam losses are misalignment of beamline elements and errors in RF fields and phase. We presented the requirements for dynamics errors and correction schemes to keep beam losses under control