Author: Kustov, A.L.
Paper Title Page
WEP111 Beam Breakup in Dielectric Wakefield Accelerating Structures: Modeling and Experiments 1689
 
  • P. Schoessow, C.-J. Jing, A. Kanareykin, A.L. Kustov
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • A. Altmark
    LETI, Saint-Petersburg, Russia
  • W. Gai, J.G. Power
    ANL, Argonne, USA
 
  Funding: Work supported by USDOE SBIR program.
Beam breakup (BBU) effects resulting from parasitic wakefields limit considerably the intensity of the drive beam that can be transported through a dielectric accelerating structure and hence the accelerating field that can be achieved. We have been developing techniques to control BBU effects using a quadrupole channel or solenoid surrounding the wakefield device. We report here on the status of simulations and experiments on BBU and its mitigation, emphasizing an experiment at the Argonne Wakefield Accelerator facility using a 26 GHz dielectric wakefield device fitted with a solenoid to control BBU. We present calculations based on a particle-Green’s function beam dynamics code (BBU-3000) that we are developing. The code allows rapid, efficient simulation of BBU effects in advanced linear accelerators.