Author: Kinkead, A.K.
Paper Title Page
MOP130 New Studies of X-band Dielectric-loaded Accelerating Structures 337
 
  • S.H. Gold
    NRL, Washington, DC, USA
  • S.P. Antipov, W. Gai, C.-J. Jing, R. Konecny, J.G. Power
    ANL, Argonne, USA
  • A. Kanareykin
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • A.K. Kinkead
    Icarus Research, Inc., Bethesda, Maryland, USA
 
  Funding: Work supported by the DoE Office of High Energy Physics and ONR.
A joint program is under way to study externally driven X-band dielectric-loaded accelerating (DLA) structures and CLIC-type power extraction structures. The structures are designed and fabricated by Argonne National Laboratory and Euclid Techlabs and tested at up to 20 MW drive power using the X-band Magnicon Facility at the Naval Research Laboratory, with additional tests carried out at SLAC. Thus far, tests have been carried out on a large variety of structures fabricated from quartz, alumina, and MCT-20, and the principal problems have been multipactor loading and rf breakdown.* Multipactor loading occurs on the inner surface of the dielectric in a region of strong normal and tangential rf electric fields; rf breakdown occurs principally at discontinuities in the dielectric. Gap-free DLA structures have been tested at 15 MV/m without breakdown. New tests are being prepared to address these two issues. New gap-free structures will make use of a metallic coating on the outer surface of the dielectric in order to permit tapering both the inner and outer diameters for rf matching, while new multipactor studies will examine the use of grooved surfaces to suppress multipactor.
* C. Jing, W. Gai, J.G. Power, R. Konecny, W. Liu, S.H. Gold, A.K. Kinkead, S.G. Tantawi, V. Dolgashev, and A. Kanareykin, IEEE Trans. Plasma Sci., vol. 38, pp. 1354–1360, June 2010.